SECTION 3.1.2 - ALCOHOLS

Codified File

Alcoholic strength by volume (Type-I-and-IV)

OIV-MA-AS312-01 Alcoholic strength by volume

Type I and type IV methods

 

  1. Introduction

This resolution is made up of one part on distillate preparation, followed by 4 methods (A, B, C and D) to determine the alcoholic strength by volume of this distillate.

  1. Scope of application

 

This resolution is applicable for determining the alcoholic strength by volume at 20 °C of vitivinicultural beverages, using any of the following:

Method A: Pycnometry

Type I Method,

Method B: Electronic densimetry using a frequency oscillator

Type I Method,

Method C: Hydrostatic balance

Type I Method,

Method D: Hydrometry and refractometry

Common Type IV Method.

  1. Definition

The alcoholic strength by volume (ABV) of a beverage is the number of litres of ethanol contained in 100 litres of hydroalcoholic solution with the same density as the beverage distillate; both volumes being determined at a temperature of 20 °C. It is expressed by the symbol '% vol.'.

  1. Principle and methods

 

4.1.  Principle

The principle of the method consists firstly of distilling the beverage by volume to volume after alkalinisation by a suspension of calcium hydroxide, which

prevents the entrainment of volatile acids. This distillation enables the elimination of non-volatile substances. The homologues of ethanol, in addition to ethanol and its homologues in esters are included in the ABV since they are present in the distillate.

Secondly, the density of the distillate is measured. The density of a liquid at a given temperature is equal to the quotient of its mass over its volume:

= m / V, and for a vitivinicultural beverage, it is expressed as g/cm3.

For hydro-alcoholic solutions such as distillates, when the temperature is known, the tables can be used to match the density up to the ABV (OIV, MA-AS312-02: R2009 Table 1). This ABV corresponds to that of the beverage (distillation by volume to volume).

4.2.  Methods of determination of ABV

The principle and procedure for each method are detailed in the following parts:

 Part A: Determination of the alcoholic strength by volume of a beverage by measuring of the density of the distillate using a pycnometer;

Part B: Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate by electronic densimetry using a frequency oscillator;

Part C: Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate by densimetry using a hydrostatic balance;

Part D: Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate by hydrometry or by refractometry.

The test temperature is set at 20 °C.

4.3.  Safety precautions

Respect the safety guidelines for the usage of distillation apparatus, and for the handling of hydro-alcoholic and cleaning solutions.

  1. Obtaining the distillate

5.1.  Reagents

5.1.1.      Type II water for analytical usage (ISO 3696 standard), or of equivalent purity

5.1.2.      Suspension of calcium hydroxide, 12% m/v

Obtain by carefully pouring 1 L of water at 60-70 °C onto 120 g of quicklime (CaO).

5.1.3.      Anti-foaming agent

5.2.  Apparatus

Any type of distillation or steam distillation apparatus may be used provided that it satisfies the following test:

Distil a hydro-alcoholic mixture with an alcoholic strength of 10% vol. five times in succession. The distillate should have an alcoholic strength of at least 9.9% vol. after the fifth distillation, i.e. the loss of alcohol during each distillation should not be more than 0.02% vol.

By way of example, use one of the following two sets of apparatus.

5.2.1.      Distillation apparatus, consisting of:

  • a round bottomed 1-L flask with a ground-glass standard joint,
  • a rectifying column of about 20 cm in height or any system designed to prevent priming,
  • a source of heat (any pyrolysis of extracted matter should be prevented by a suitable arrangement),
  • a condenser terminated by a tapered tube taking the distillate to the bottom of a graduated receiver flask containing several mL of water. 
    1.       Steam distillation apparatus consisting of:
  • a steam generator,
  • a bubbler,
  • a rectifying column,
  • a condenser.
    1.   Preparation of the sample

Remove the bulk of any carbon dioxide from samples with bubbles (e.g. by stirring 250 to 300 mL of the wine in a 500-mL flask).

5.4.  Procedure

5.4.1.      Procedure for beverages with an ABV greater than or equal to 1.5% vol.

Take a sample of a 200-mL volume of beverage using a calibrated flask. Note the temperature of the sample.

Pour it into the flask of the distillation apparatus or into the bubbler of the steam distillation apparatus. Rinse the calibrated flask four times with approx. 5 mL of water and add this to the apparatus' flask or bubbler.

Add approx. 10 mL 2 M calcium hydroxide ((5.1.2). If necessary, several fragments of inert porous material (e.g. pumice, etc.) and/or several drops of anti-foaming agent (5.1.3) may also be added to facilitate distillation.

Collect the distillate in the 200-mL calibrated flask used to measure the beverage. Collect a volume of about three-quarters of the initial volume if distillation is used or 198-199 mL of distillate if steam distillation is used.

Make up to 200 mL with distilled water, keeping the distillate at within ± 2 °C of the initial temperature.

Carefully mix using a circular motion.

Note: In the case of wines containing particularly large concentrations of ammonium ions, the distillate may be redistilled under the conditions described above, but replacing the suspension of calcium hydroxide with 1 mL sulphuric acid diluted to 10% (v/v).

5.4.2.      Procedure for beverages with an ABV less than 1.5% vol.

Take a sample of a 200-mL volume of beverage using a calibrated flask. Note the temperature of the beverage. Pour it into the flask of the distillation apparatus or into the bubbler of the steam distillation apparatus. Rinse the calibrated flask four times with approx. 5 mL of water and add this to the apparatus' flask or bubbler. Add approx. 10 mL 2 M calcium hydroxide (5.1.2) and, in the case of distillation, if necessary, a boiling regulating agent (e.g. pumice, etc.). In a 100-mL calibrated flask, collect a volume of distillate of about 75 mL if distillation is used or 98-99 mL of distillate if steam distillation is used.

Make up to 100 mL with distilled water, keeping the distillate at within 2°C of the initial temperature. Carefully mix using a circular motion.

 

Part A: Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate using a pycnometer

(Type I Method)

(Method A2/1978 – Resolution OIV/OENO 377/2009)

A.1.           Principle

 

The density of the distillate is determined, which is matched to the ABV using the Tables.

The density is measured for a specific temperature using a glass pycnometer. This comprises a flask of known capacity, onto which a hollow ground-glass stopper is fitted equipped with a capillary tube. When the flask is closed, the overflow rises in the capillary. The volumes of the flask and the capillary being known, the density is determined by weighing using precision balances before and after filling of the pycnometer.

A.2.           Reagents and products

 

A.2.1.    Type II water for analytical usage (ISO 3696 standard), or of equivalent purity

A.2.2.    Sodium chloride solution (2% m/v)

To prepare 1 litre, weigh out 20 g sodium chloride and dissolve to volume with water.

A.3.           Apparatus and material

 

Common laboratory apparatus, including the following:

A.3.1.     Pyrex-glass pycnometer of around 100 mL capacity with a removable thermometer, with ground-glass joint and 10th-of-a-degree graduations, from 10°C to 30°C. This thermometer should be calibrated (Fig. 1).

Any pycnometer of equivalent characteristics may be used.

 

This pycnometer includes a side tube of 25 mm in length and an inside diameter of at most 1 mm, terminated by a ground-glass conical joint. This side tube may be capped by a 'reservoir stopper' composed of a ground-glass conical tube, terminated by a tapered joint. This stopper serves as an expansion chamber.

The two joints of the apparatus should be prepared with great care.

A.3.2.     Tare bottle of the same external volume (to within 1 mL) as the pycnometer and with a mass equal to the mass of the pycnometer filled with a liquid of a density of 1.01 (2% m/v sodium chloride solution).

A.3.3.     Thermally-insulated jacket that fits the body of the pycnometer exactly.

A.3.4.     Twin-pan balance accurate to the nearest 0.1 mg

 or

single-plate balance accurate to the nearest 0.1 mg.

A.3.5.     Masses calibrated by an accredited body.

 

A.4.           Procedure

A.4.1.    Pycnometer calibration

The calibration of the pycnometer comprises the determination of the following characteristics:

  • tare weight,
  • volume at 20 °C,
  • water mass at 20 °C.
    1.                        Using a twin-pan balance

Place the tare bottle on the left-hand pan and the clean, dry pycnometer with its 'reservoir stopper' on the right-hand pan. Balance them by placing weights of known mass on the pycnometer side: p grams.

Fill the pycnometer carefully with water (A.2.1) at room temperature and fit the thermometer.

Carefully wipe the pycnometer dry and place it in the thermally-insulated jacket.

Shake by inverting the container until the thermometer's temperature reading is constant. Accurately adjust the level to the upper rim of the side tube. Wipe the side tube clean and fit the reservoir stopper.

Read the temperature, t °C, carefully and if necessary correct for any inaccuracies in the temperature scale.

Weigh the water-filled pycnometer, with the weight in grams, p, making up the equilibrium.

Calculations

Tare of the empty pycnometer:

Tare weight = p + m where m = mass of the air contained in the pycnometer, in g

  • m (g) = 0.0012 (p - p’)

Volume at 20 °C in mL:

(mL) = (p + m p') x Ft

Ft = factor for temperature, t °C, taken from Table I

should be known to 0.001 mL

Water mass at 20 °C:

= x 0.998203, in g

0.998203 = water density at 20 °C, in g/cm3 

A.4.1.2.        Using a single-pan balance

Determine:

  • the mass of the clean, dry pycnometer: P,
  • the mass of the water-filled pycnometer at t °C: P1 following the instructions outlined in A.4.1.1,
  • the mass of the tare bottle, T0.

Calculations

Tare of the empty pycnometer:

Tare weight: P – m where m (g) = mass of the air contained in the pycnometer, in g

m (g) = 0.0012 ( - P)

Volume at 20 °C in mL:

= factor for temperature, t °C, taken from Table I

should be known to 0.001 mL.

Water mass at 20 °C:

0.998203 = water density at 20 °C, in g/cm3

A.4.2.     Determination of the density of the distillate

Measure the apparent density of the distillate at t °C using a twin-pan or single-pan balance:

A.4.2.1.                       Using a twin-pan balance

Weigh the pycnometer filled with the test sample following the instructions outlined in A.4.1.1.

Where p" represents the mass in grams that makes up the equilibrium at  °C,

taking into account that the liquid mass contained in the pycnometer = p + m - p",

the apparent density at t °C, in g/cm3, is given by the following equation

 

A.4.2.2.                       Using a single-pan balance

Weigh the tare bottle, where T1 is its mass in g.

Calculate

Mass of the empty pycnometer at the time of measurement = P - m + dT, in g

Weigh the pycnometer filled with the test sample following the instructions outlined in A.4.1.1.

Where P2 represents its mass at t °C,

the liquid mass contained in the pycnometer at t °C = (P - m + dT), in g

and the apparent density at t °C, in g/cm3, is as follows:

A.5.           Expression of results and precision parameters

 

A.5.1.     Method of calculation

A.5.1.1.                       Beverages with an ABV greater than or equal to 1.5% vol.

Find the alcoholic strength at 20 °C in % vol. to 2 d.p. using Table I of Method OIV-MA-AS312-02A. Please note, this table uses the unit kg/m3 and not g/cm3.

The relationship is as follows: 1 g/cm3 = 1000 kg/m3.

In the horizontal line of this table corresponding to the temperature, T, (expressed as a whole number) immediately below t °C, find the smallest density greater than t. Use the tabular difference just below this density to calculate the density ρ at this temperature, T.

On the line of the temperature, T, find the density ' immediately above  and calculate the difference between the densities ρ and ρ'. Divide this difference by the tabular difference just to the right of the density ρ'. The quotient gives the decimal part of the alcoholic strength, while the whole number part of this strength is shown at the head of the column in which the density ρ' is located.

An example of calculation of the alcoholic strength is given in Annex 1 to this Chapter.

Note: This temperature correction has been incorporated into a computer program and might possibly be carried out automatically.

A.5.1.2.                       Beverages with an ABV less than 1.5% vol.

Identical to A.5.1.1, dividing the alcoholic strength by volume of the distillate (ABVD) by 2.

ABV = ABVD/2, % vol. to 2 d.p.

A.6.           Precision

 

Repeatability (r):

  • r = 0.10 % vol.

Reproducibility (R)

  • R = 0.19 % vol.

The validation parameters for beverages with a low alcohol content are given in Annex II.

A.7.           Example of the calculation of the alcoholic strength of a wine

A.7.1.    Measurement by pycnometer on a twin-pan balance

The constants of the pycnometer have been determined and calculated as described in the method OIV-MA-AS2-01, ‘Density and specific gravity’, paragraph A.7.

A.4.2.1 Using a twin-pan balance

Numerical example

1. Weighing of the distillate-filled pycnometer:

Tare = pycnometer + distillate at t °C + p”

 

p + mp” = mass of the distillate at t °C

Apparent density at t °C:

2. Calculation of the alcoholic strength:

Consult the table of apparent densities of hydro-alcoholic mixtures at different temperatures, as indicated above.

t °C = 18.90 °C
corrected t °C = 18.70 °C

p”  = 2.8074 g

105.0698 – 2.8074 = 102.2624 g

On the line 18 °C of the table of apparent densities, the smallest density greater than the observed density of 0.983076 is 0.98398, in the column 11%.

The density at 18 °C is:

(98307.6 + 0.7 x 22) 10-5 = 0.98323  0.98398 – 0.98323 = 0.00075

The decimal portion of the alcoholic strength is: 75 / 114 = 0.65

The alcoholic strength is: 11.65% vol.

A.7.2.     Measurement by pycnometer on a single-pan balance

The constants of the pycnometer have been determined and calculated as described in the method OIV-MA-AS2-01, ‘Density and specific gravity’, paragraph A.7.

Numerical example

Weighing of the pycnometer filled with distillate:

Weight of tare bottle at the time of

measurement

: T1= 171.9178 g

Pycnometer filled with distillate at 20.50 °C

: P2= 167.8438 g

Variation in the buoyancy of air

: dT = 171.9178 – 171.9160

= + 0.0018

Mass of the distillate at 20.5 °C

: Lt  = 167.8438 – (67.6695 + 0.0018)

= 100.1725 g

Apparent density of the distillate : ρ20.5 °C = 100.1725/101.8194 =

 0.983825 g/cm3

Calculation of alcoholic strength:

Refer to the table of apparent densities of hydro-alcoholic mixtures at different temperatures, as indicated above.

 

Part B Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate by electronic densimetry using a frequency oscillator

(Type I method)

(Resolution OENO 8/2000 – OIV/OENO 377/2009)

 

B.1.Principle

 

In the present method the distillate density is measured by electronic densimetry using a frequency oscillator. The principle consists of measuring the period of oscillation of a tube containing the sample undergoing electromagnetic stimulation. The density is thus calculated and is linked to the period of oscillation by the following formula:

(1)

ρ = density of the sample 

T = period of induced vibration

M = mass of empty tube

C = spring constant

V = volume of vibrating sample

This relationship is in the form ρ = A – B (2), so there is a linear relationship between the density and the period squared. The constants A and B are specific to each oscillator are estimated by measuring the period of fluids of known density.

B.2.Reagents and products

B.2.1Reference fluids

Two reference fluids are used to adjust the densimeter. The densities of the reference fluids should encompass the densities of the distillates to be analysed. A spread of greater than 0.01000 g/cm3 between the densities of the reference fluids is recommended.

The reference fluids for the determination of the ABV of vitivinicultural beverages by electronic densimetry are as follows:

  • dry air (unpolluted),
  • Type II water for analytical usage (ISO 3696 standard), or of equivalent purity,
  • hydro-alcoholic solutions of densities determined by another reference method, for which the uncertainty does not exceed 0.00005 g/cm3 at the temperature of 20.00 0.05°C,
  • solutions calibrated with traceability to the International System of Units (SI), with viscosities of less than 2 mm2/s, for which the uncertainty does not exceed 0.00005 g/cm3 at the temperature of 20.00 0.05°C.

B.2.2. Cleaning and drying products

Use products that ensure the perfectly clean and dried state of the measuring cell, according to the manufacturer’s indications. For example:

  • detergents, acids, etc.,
  • organic solvents: 96% vol. ethanol, pure acetone, etc.

B.3. Apparatus and equipment

B.3.1. Electronic densimeter with frequency oscillator

The electronic densimeter consists of the following elements:

  • a measuring cell consisting of a measuring tube and a temperature-controlled enclosure,
  • a system for setting up an oscillation tube and measuring the period of oscillation,
  • a digital display and possibly a calculator.

The densimeter is placed on a perfectly stable support isolated from all vibrations.

B.3.2. Temperature control of the measuring cell

Locate the measuring tube in the temperature-controlled enclosure. Temperature stability should be better than 0.02°C.

It is necessary to control the temperature of the measuring cell when the densimeter makes this possible because this strongly influences the determination results. The density of a hydro-alcoholic solution with an ABV of 10% vol. is 0.98471 g/cm3 at 20 °C and 0.98447 g/cm3 at 21 °C, equating to a spread of 0.00024 g/cm3.

The test temperature is set at 20 °C. The temperature is taken at the cell level, and done with a thermometer that has a resolution accurate to 0.01 °C and is calibrated to national standards. This should enable a temperature measurement with an uncertainty of better than 0.07°C.

B.3.3. Calibration of the apparatus

The apparatus should be calibrated before using it for the first time, then periodically or if the verification is not satisfactory. The objective is to use two reference fluids to calculate the constants A and B [see formula (2), B.1). To carry out the calibration in practice, refer to the user manual of the apparatus. In principle, this calibration is carried out with dry air (taking into account the atmospheric pressure) and very pure water (B.2.1).

B.3.4. Calibration verification

In order to verify the calibration, measure the density of the reference fluids.

Every day of use, a density check of the air is carried out. A difference between the theoretical density and observed density of more than 0.00008 g/cm3 may indicate that the tube is clogged. In that case, it should be cleaned. After cleaning, verify the air density again. If the verification is not conclusive, adjust the apparatus.

Check the density of the water; if the difference between the theoretical density and the density observed is greater than 0.00008 g/cm3, adjust the apparatus.

If verification of the cell temperature is difficult, it is possible to directly check the density of a hydro-alcoholic solution of comparable ABV to those of the distillates analysed.

B.3.5. Checks

When the difference between the theoretical density of the reference solution (known with an uncertainty of 0.00005 g/cm3) and the measured density is above 0.00008 g/cm3, the calibration of the apparatus should be checked.

B.4. Procedure

After obtaining a distillate, measure the density by densimetry and match to the ABV using the Tables.

Ensure the stability of the temperature of the measuring cell. The distillate in the densimeter cell should not contain air bubbles and should be homogeneous. If there is a lighting system available that makes it possible to verify the absence of bubbles, turn it off quickly after checking because the heat generated by the lamp can influence the measuring temperature.

For apparatus with a permanent lighting system, this statement is not applicable.

If the apparatus only provides the period, the density can be calculated from the A and B constants (see Annex I). If the apparatus does not provide the ABV directly, by knowing the density, obtain the ABV using the tables (Table I, OIV-MA-312-02).

B.5. Expression of results

B.5.1. Expression of results

B.5.1.1. Beverages with an ABV greater than or equal to 1.5% vol.

The alcoholic strength by volume of the beverage is obtained from the distillate. This is expressed as ‘% vol’.

If the temperature conditions are not respected, a correction should be made to express the temperature at 20 °C. The result is given to two decimal places.

B.5.1.2. Beverages with an ABV less than 1.5% vol.

Identical to B.5.1.1, dividing the alcoholic strength of the distillate (ABVD) by 2.

ABV = ABVD/2, % vol. to 2 d.p.

The validation parameters for beverages with a low alcohol content are given in Annex II

B.5.2. Comments

The volume introduced into the cell should be sufficient enough to avoid possible contamination caused from the previous sample. It is thus necessary to carry out at least two tests. If these do not provide results included in the repeatability limits, a third test is necessary. In general, the results from the last two tests are homogeneous and the first value can then be eliminated.

B.6. Precision

For samples with an ABV of greater than 4% vol., the validation data and precision results are given in Annex III.

epeatability (r) = 0.067 (% vol.)

Reproducibility (R) = 0.0454 + 0.0105 x ABV (% vol.)

For samples with an ABV of less than 4% vol. the validation data and precision results are given in Annex II

 

Part C: Determination of the alcoholic strength by volume of a beverage by measuring the density of the distillate by densimetry using a hydrostatic balance

(Type I Method)

(Resolution Oeno 24/2003 – OIV/OENO 377/2009)

C.1. Principle

The alcoholic strength by volume can be determined by densimetry using a hydrostatic balance following the Archimedes principle, by which any body immersed in a fluid experiences an upward force equal to the weight of the displaced fluid.

C.2. Reagents and products

 

C.2.1. Type II water for analytical usage (ISO 3696 standard), or of equivalent purity,

C.2.2. Floater-washing solution (sodium hydroxide, 30% m/v).

To prepare a 100 mL solution, weigh out 30 g of sodium hydroxide and fill to volume using 96% vol. ethanol.

C.3.           Common laboratory apparatus, including the following:

C.3.1.     Single-pan hydrostatic balance with 1 mg precision.

C.3.2.     Floater with at least 20 mL volume, specifically adapted for the balance, suspended by a thread with a diameter of less than or equal to 0.1 mm.

C.3.3.     Cylindrical test tube with level indicator.

The floater should be able to fit entirely within the test tube volume below the level indicator; only the hanging thread should break the surface of the liquid. The cylindrical test tube should have an inside diameter at least 6 mm greater than that of the floater.

C.3.4.     Thermometer (or temperature-measurement probe) with degree and 10th-of-a-degree graduations, from 10 °C to 40 °C, calibrated to ± 0.05 °C.

C.3.5.     Masses calibrated by an accredited body.

C.4.            Procedure

After each measurement, the floater and the test tube should be cleaned with distilled water, wiped with soft laboratory paper that does not lose its fibres and rinsed with solution whose density is to be determined. These measurements should be carried out once the apparatus has reached a stable level in order to limit alcohol loss through evaporation.

C.4.1.     Apparatus calibration

C.4.1.1.                       Balance calibration

While balances usually have internal calibration systems, hydrostatic balances should be calibrated with weights with traceability to the International System of Units (SI).

C.4.1.2 Floater calibration

Fill the cylindrical test tube up to the level indicator with water (C.2.1) whose temperature is between 15 °C and 25 °C, but preferably at 20 °C.

Plunge the floater and the thermometer into the liquid, shake, note down the density on the apparatus and, if necessary, adjust the reading in order for it to be equal to that of the water at the measurement temperature.

C.4.1.3. Control using a hydro-alcoholic solution

Fill the cylindrical test tube up to the level indicator with a known titre of hydro-alcoholic solution at a temperature of between 15°C and 25 °C, preferably at 20°C.

Plunge the floater and the thermometer into the liquid, shake and note down the density on the apparatus (or the alcoholic strength if possible). The established alcoholic strength should be equal to the previously determined alcoholic strength.

Note: This solution of known alcoholic strength can also replace water for floater calibration.

C.4.2.     Measurement of the density of the distillate (or alcoholic strength if possible)

Pour the test sample into the cylindrical test tube up to the level indicator.

Plunge the floater and the thermometer into the liquid, shake and note down the density on the apparatus (or the alcoholic strength if possible).

Note the temperature if the density is measured at t °C (ρt).

Correct ρt using a ρt density table of hydro-alcoholic mixtures (Table II in Annex I of the method OIV-MA-AS312-02 in the OIV Compendium of International Methods of Analysis).

C.4.3.     Cleaning of the floater and cylindrical test tube

Plunge the floater into the washing solution in the test tube.

Allow to soak for one hour while turning the floater regularly.

Rinse with tap water, then with distilled water.

Wipe with soft laboratory paper that does not lose its fibres.

Carry out these operations when the floater is used for the first time and then on a regular basis as necessary.

C.5.           Expression of results

C.5.1.     Beverages with an ABV greater than or equal to 1.5% vol.

Using the density ρ20, calculate the real alcoholic strength using the table indicating the alcoholic strength by volume (% vol.) at 20°C according to the density at 20°C of the hydro-alcoholic mixtures. This is the international table adopted by the International Organization of Legal Metrology in its Recommendation No. 22 (1973).

The values are expressed in % vol. to 2 d.p.

C.5.2.     Beverages with an ABV less than or equal to 1.5% vol.

Identical to C.5.1, dividing the alcoholic strength of the distillate (ABVD) by 2.

ABV = ABVD/2, % vol. to 2 d.p.

The validation parameters for beverages with a low alcohol content are given in Annex II.

C.6.           Precision

Repeatability (r)=  0.074 (% vol.)

Reproducibility (R)=  0.229 (% vol.)

 

Part D: Determination of the alcoholic strength by volume of a wine by measuring the density of the distillate by hydrometry or refractometry

(Type IV Method)

 

D.1.           Principle

The alcoholic strength may be determined by densimetry using an alcoholometer following the Archimedes principle. A weighted cylinder equipped with a graduated stem is more or less immersed into the distillate whose density is to be determined. The density of the liquid is read directly on the graduation of the stem at the level of the meniscus.

 

D.2.           Hydrometry

D.2.1.    Apparatus and materials

D.2.1.1.                      Alcoholometer

The alcoholometer should meet the specifications for Class I or Class II alcoholometers as defined in OIML (International Organization of Legal Metrology) International Recommendation 44 “Alcoholometers and alcohol hydrometers for use in alcoholometry”.

This apparatus should be calibrated with traceability to the International System of Units (SI).

D.2.1.2.                       Thermometer calibrated with traceability to the International System of Units (SI) with degree and 10th-of-a-degree graduations, from 0 °C to 40 °C, calibrated to ± 0.05 °C.

D.2.1.3.                       Measuring cylinder with dimensions that allow for the immersion of the thermometer and the alcoholometer without contact with the sides, held vertically.

D.2.2.     Procedure

Pour the distillate into the measuring cylinder, ensure that the cylinder is kept vertical, and insert the thermometer and alcoholometer. Stir and wait 1 minute to allow temperature equilibration of the measuring cylinder, the thermometer, the alcoholometer and the distillate before reading the thermometer. Remove the thermometer and, after 1 minute of rest, read the apparent alcoholic strength.

Take at least three readings from the bottom of the meniscus using a magnifying glass. Correct the apparent strength measured at t °C to account for the effect of the temperature using the Tables. The temperature of the liquid must differ very little from the room temperature (at most, by 5 °C).

 

D.3.           Refractometry

D.3.1.    Apparatus

Refractometer enabling the refractive indices in the range 1.330 to 1.346 to be measured.

Depending on the type of apparatus, measurements are taken:

either at 20°C, with a suitable instrument,

or at room temperature, t°C, with a thermometer enabling the temperature to be determined to within at least 0.05°C (a temperature correction table will be provided with the apparatus).

D.3.2.     Procedure

The refractive index of the wine distillate (5) is measured by following the procedure prescribed for the type of instrument used.

D.3.3.     Expression of results

Table IV in Chapter OIV-MA-AS312-02 is used to find the alcoholic strength corresponding to the refractive index at 20°C.

Note: Table IV gives the alcoholic strengths corresponding to the refractive indices for both pure hydro-alcoholic mixtures and for wine distillates. In the case of wine distillates, it takes into account the presence of impurities in the distillate (mainly higher alcohols). The presence of methanol lowers the refractive index and thus the alcoholic strength.

Note: To obtain the alcoholic strength from the density of the distillate, use Tables I, II and III in Chapter OIV-MA-AS312-02. These have been calculated from the international alcoholometric tables published in 1972 by the International Organization of Legal Metrology in its Recommendation No. 22 and adopted by the OIV.

 

7.      Annexes

 

Annex I

Formula for the calculation of alcoholic strength tables for mixtures of ethanol and water.

The density, , ρ expressed in kilograms per cubic metre (kg/m³) of a mixture of ethanol and water at the temperature t, expressed in degrees Celsius, is given by the following formula, according to the following:

the mass concentration ρ, expressed by a decimal number (*),

the temperature t, expressed in degrees Celsius (IPTS 68),

the numerical coefficients in the tables below.

The formula is valid for temperatures of between –20 °C and +40 °C.

(*) E.g. For a mass concentration of 12%, p = 0.12.

Numeric coefficients for the formula

 

Une image contenant table

Description générée automatiquement

 

Annex II Validation parameters relating to the measurement of the ABV of beverages with a low alcohol content

This document presents the results of the validation study for the method for beverages with a low alcohol content (update).

The study was carried out in accordance with documents OIV MA-F-AS1-08-FIDMET and MA-F-AS1-09-PROPER.

  1. Sample

Sample no.

1

2

3

4

5

6

Nature

Grape juice

Beverage obtained by dealcoholisation of wine

Beverage obtained by partial dealcoholisation of wine

Partially fermented grape juice

Cider

Wine-based beverage

Approximate ABV in %vol.

< 0.5

0.5

1.5

2.5

4.5

6.5

Table 1: Samples analysed for the validation

  1. Analyses

Each of the 12 samples received by the laboratories were analysed by simple distillation or by steam distillation according to the following two procedures:

OIV reference method with use of 200 mL and recovery of 200 mL of distillate,

Alternative method with use of 200 mL and recovery of 100 mL of distillate.

  1. Participating laboratories

 

19 laboratories from different countries took part:

Laboratório CVRVV

4050-501 Porto

Portugal

Laboratório de Análises da CVRA

7006-806 Évora

Portugal

Testing Laboratory CAFIA

603 00 BRNO

Czech Republic

Laboratório ASAE - LBPV

1649-038 Lisboa

Portugal

Agroscope - Site de Changins

1260 Nyon 1

Switzerland

Labo SCL de Bordeaux

33608 Pessac

France

Labo SCL de Montpellier

34196 Montpelllier

France

Laboratorio Arbitral Agroalimentario

28023 Madrid

Spain

Estación Enológica de Haro

26200 Haro La Rioja

Spain

Instituto dos Vinho do Douro do Porto

Porto 4050-253

Portugal

IVICAM

13700 Tomelloso, Ciudad Real

Spain

INCAVI

08720 Vilafranca del Penedès

Spain

ICQRF Laboratorio di Conegliano/Susegana

31058 SUSEGANA (TV)

Italy

ICQRF Laboratorio di Catania

95122 CATANIA

Italy

ICQRF Laboratorio di Modena

41100 Modena

Italy

ICQRF laboratorio di Perugia

06128 Perugia

Italy

ICQRF laboratorio di Salerno

84098 Salerno

Italy

ICQRF Laboratorio centrale di  Roma

00149 Rome

Italy

Laboratoires DUBERNET

11100 Narbonne

France

Table 2: Laboratories that took part in the validation

 

  1. Results

Sample No. 1

Sample No. 2

Sample No.°3

Sample No. 4

Sample No. 5

Sample No. 6

LAB

POSITION :

2

7

4

11

6

12

5

8

9

10

1

3

A

0.21

0.21

0.55

0.55

1.34

1.34

2.58

2.58

4.59

4.60

6.54

6.50

B

0.11

0.14

0.49

0.50

1.32

1.38

2.60

2.57

4.68

4.72

6.52

6.55

C

0.33

0.28

0.68

0.61

1.43

1.35

2.63

2.60

4.63

4.66

6.58

6.51

D

0.62

0.62

1.38

1.36

2.68

2.67

4.69

4.73

6.62

6.64

E

0.20

0.21

0.55

0.56

1.36

1.40

2.61

2.62

4.67

4.68

6.56

6.55

F

0.18

0.12

0.52

0.51

1.31

1.30

2.56

2.56

4.70

4.66

6.51

6.54

G

0.22

0.22

0.55

0.56

1.37

1.37

2.62

2.62

4.68

4.68

6.58

6.57

H

0.41

0.42

1.25

1.27

2.46

2.49

4.57

4.56

6.39

6.40

I

0.20

0.13

0.54

0.48

1.32

1.28

2.60

2.58

4.62

4.62

6.57

6.55

J

0.24

0.24

0.58

0.60

1.41

1.37

2.63

2.63

4.69

4.67

6.55

6.55

K

0.22

0.22

0.56

0.55

1.35

1.35

2.63

2.63

4.67

4.68

6.59

6.58

L

0.22

0.23

0.56

0.57

1.38

1.36

2.63

2.61

4.66

4.67

6.56

6.57

M

0.18

0.18

0.53

0.53

1.33

1.29

4.66

4.65

6.53

6.52

N

0.22

0.23

0.56

0.57

1.38

1.41

2.26

2.61

4.67

4.67

6.51

6.57

O

0.12

0.19

0.53

0.52

1.33

1.33

2.64

2.62

4.67

4.67

6.51

6.55

P

0.25

0.25

0.57

0.58

1.39

1.41

2.66

2.65

4.70

4.68

6.62

6.62

Q

0.22

0.20

0.55

0.59

1.34

1.33

2.61

2.63

4.65

4.63

6.52

6.54

R

0.21

0.21

0.55

0.52

1.29

1.28

2.52

2.55

4.62

4.56

6.50

6.53

S

0.18

0.17

0.41

0.42

1.38

1.37

2.61

2.58

4.63

4.58

6.51

6.48

Table 3: Results obtained for a 200 mL distillation with recovery volume of 200 mL

Results not presented were rejected in accordance with the Cochran (variance outliers) test with a 2.5% significance level (one-tailed test) and the Grubbs (outliers from the mean) test with significance levels of 2.5% (two-tailed test).

Note: The absent values have not been provided by the laboratory in question.

Sample No. 1

Sample No. 2

Sample No.°3

Sample No. 4

Sample No. 5

Sample No. 6

LAB

POSITION :

2

7

4

11

6

12

5

8

9

10

1

3

A

B

0.17

0.18

0.52

0.53

1.34

1.36

2.62

2.62

4.62

4.60

6.48

6.52

C

0.25

0.25

0.56

0.62

1.35

1.36

2.50

2.46

4.48

4.44

6.12

6.19

D

0.29

0.29

0.63

0.63

1.43

1.42

2.66

2.65

4.68

4.69

6.58

6.59

E

0.24

0.24

0.58

0.58

1.39

1.39

2.64

2.64

4.66

4.67

6.55

6.57

F

0.21

0.18

0.53

0.53

1.31

1.27

2.41

2.48

4.30

4.31

6.22

5.89

G

0.24

0.24

0.56

0.57

1.35

1.36

2.58

2.57

4.57

4.56

6.46

6.43

H

0.19

0.18

0.48

0.55

1.33

1.32

2.51

2.55

4.59

4.54

6.38

6.42

I

0.25

0.18

0.56

0.53

1.34

1.33

2.62

2.61

4.64

4.64

6.25

6.28

J

0.24

0.24

0.55

0.56

1.31

1.32

2.49

2.53

4.37

4.34

6.14

6.12

K

0.25

0.25

0.57

0.57

1.37

1.38

2.60

2.61

4.60

4.61

6.48

6.38

L

0.24

0.24

0.55

0.55

1.35

1.31

2.52

2.47

4.38

4.31

6.09

6.06

M

0.19

0.20

0.55

0.55

1.34

1.31

4.68

4.67

6.52

6.54

N

0.28

0.26

0.58

0.59

1.28

1.28

2.52

2.47

4.44

4.32

6.01

6.15

O

0.19

0.25

0.57

0.57

1.39

1.39

2.63

2.64

4.66

4.66

6.57

6.57

P

0.25

0.26

0.57

0.57

1.36

1.36

2.58

2.56

4.54

4.53

6.34

6.38

Q

0.24

0.24

0.57

0.57

1.38

1.38

2.63

2.62

4.66

4.67

6.56

6.56

R

0.23

0.23

0.54

0.55

1.32

1.30

2.54

2.56

4.56

4.52

6.40

6.35

S

0.27

0.26

0.55

0.57

1.34

1.34

2.46

2.43

4.53

4.51

6.36

6.36

Table 4: Results obtained for a 200 mL distillation with recovery volume of 100 mL

 

Results not presented were rejected in accordance with the Cochran (variance outliers) test with a 2.5% significance level (one-tailed test) and the Grubbs (outliers from the mean) test with significance levels of 2.5% (two-tailed test).

Note: The absent values have not been provided by the laboratory in question.

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

No. of laboratories selected

17

19

19

17

19

18

No. of repetitions

2

2

2

2

2

2

Minimum

0.11

0.41

1.25

2.46

4.56

6.48

Maximum

0.33

0.68

1.43

2.68

4.73

6.64

Overall average

0.20

0.54

1.35

2.60

4.65

6.55

Repeatability variance

0.00052

0.00033

0.00050

0.00019

0.00036

0.00047

Reproducibility variance

0.00211

0.00345

0.00190

0.00229

0.00181

0.00147

Inter-laboratory standard deviation

0.043

0.057

0.041

0.047

0.040

0.035

Repeatability standard deviation

0.02

0.02

0.02

0.01

0.02

0.02

r limit

0.06

0.05

0.06

0.04

0.05

0.061

Repeatability CV

11.1

3.3

1.7

0.5

0.4

0.3

Reproducibility standard deviation

0.046

0.059

0.044

0.048

0.043

0.038

R limit

0.130

0.166

0.123

0.135

0.120

0.109

Reproducibility CV

22.5

10.9

3.2

1.8

0.9

0.6

Horwitz RSDr

3.36

2.90

2.52

2.29

2.09

1.99

Horratr

3.3

1.1

0.7

0.2

0.2

0.2

Horwitz RSDR

5.10

4.39

3.82

3.46

3.17

3.01

HorratR

4.4

2.5

0.8

0.5

0.3

0.2

Table 5: Data obtained for a 200 mL distillate from a 200 mL sample

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

No. of laboratories selected

16

15

18

17

17

17

No. of repetitions

2

2

2

2

2

2

Minimum

0.17

0.52

1.27

2.41

4.30

6.01

Maximum

0.29

0.63

1.43

2.66

4.69

6.59

Overall average

0.24

0.56

1.35

2.56

4.55

6.38

Repeatability variance

0.00006

0.00003

0.00016

0.00050

0.00039

0.00135

Inter-laboratory standard deviation

0.03209

0.02496

0.03752

0.07013

0.12167

0.17621

Reproducibility variance

0.001

0.001

0.001

0.005

0.015

0.031

Repeatability standard deviation

0.01

0.01

0.01

0.02

0.02

0.04

r limit

0.02

0.02

0.04

0.06

0.06

0.104

Repeatability CV

3.2

1.0

0.9

0.9

0.4

0.6

Reproducibility standard deviation

0.033

0.025

0.039

0.072

0.122

0.178

R limit

0.092

0.071

0.109

0.203

0.347

0.504

Reproducibility CV

13.8

4.5

2.9

2.8

2.7

2.8

Horwitz RSDr

3.27

2.88

2.52

2.29

2.10

2.00

Horratr

1.0

0.4

0.4

0.4

0.2

0.3

Horwitz RSDR

4.96

4.36

3.82

3.47

3.18

3.03

HorratR

2.8

1.0

0.8

0.8

0.9

0.9

Table 6: Data obtained for a 100 mL distillate from a 200 mL sample

Annex III Validation parameters relating to the measurement of the ABV

by electronic densimetry (Part B)

  1. Inter-laboratory tests: precision and accuracy on additions 

1.1.  Samples

The samples used for this joint study are described in Table 7.

No.

Nature

Approximate ABV (% vol.)

C0

Cider (filtered through a membrane to remove CO2)

~5

V0

Filtered wine

~10

V1

Filtered wine then doped

~11

V2

Filtered wine then doped

~12

V3

Filtered wine then doped

~13

P0

Liqueur wine

~16

Table 7: Samples for the joint study

All samples were homogenised before filling the bottles to be sent to the participants. For wine, 40 litres were homogenised before sending and carrying out the additions.

For the additions, absolute ethanol was poured into a 5-L volumetric flask, then filled up to the line with filtered wine. This was repeated two times. The volumes of ethanol were 50, 100 and 150 mL respectively for the V1, V2 and V3 samples.

1.2.  Participating laboratories

The participating laboratories in the joint study are outlined in Table 8.

Laboratory

Postcode

City

ALKO Group LTD

FIN-00101

Helsinki

Bénédictine

76400

Fécamp

Casanis

18881

Gemenos

CIVC

51200

Epernay

Cointreau

49181

St Barthélémy d'Anjou

Courvoisier

16200

Jarnac

Hennessy

16100

Cognac

IDAC

44120

Vertou

Laboratoire Gendrot

33000

Bordeaux

Martell

16100

Cognac

Ricard

94320

Thiais

SOEC Martin Vialatte

51319

Epernay

Table 8: List of laboratories participating in the joint study

In order to not introduce a methodological bias, the results of the Station Viticole du Bureau National Interprofessionnel du Cognac (the joint-study organiser) are not taken into account.

1.2.1.      Analyses

The C0 and P0 products were distilled independently two times, and the V0, V1, V2 and V3 products three times. Three ABV tests were done for each distillate. The results are displayed in the results table.

1.2.2.      Results

The second test (out of the three carried out) was kept for the precision study (Table 9).

 Laboratory

C0

V0

V1

V2

V3

P0

6.020

9.500

10.390

11.290

12.100

17.080

1

5.970

9.470

10.380

11.260

12.150

17.080

9.450

10.340

11.260

12.150

6.040

9.500

10.990

11.270

12.210

17.050

2

6.040

9.500

10.390

11.280

12.210

17.050

9.510

10.400

11.290

12.200

5.960

9.460

10.350

11.280

12.170

17.190

3

5.910

9.460

10.360

11.280

12.150

17.200

9.450

10.340

11.260

12.170

6.020

9.470

10.310

11.250

12.160

16.940

4

6.020

9.450

10.350

11.250

12.120

17.070

9.450

10.330

11.210

12.130

5.950

9.350

10.250

11.300

12.050

17.000

5

5.950

9.430

10.250

11.300

12.050

17.000

9.430

10.250

11.300

12.050

6.016

9.513

10.370

11.275

12.222

17.120

6

6.031

9.513

10.336

11.266

12.222

17.194

9.505

10.386

11.275

12.220

5.730

9.350

10.230

11.440

12.080

17.010

7

5.730

9.430

10.220

11.090

12.030

16.920

9.460

10.220

11.080

11.930

5.990

9.400

10.340

11.160

12.110

17.080

8

6.000

9.440

10.320

11.150

12.090

17.110

9.440

10.360

11.210

12.090

6.031

9.508

10.428

11.289

12.180

17.089

9

6.019

9.478

10.406

11.293

12.215

17.084

9.509

10.411

11.297

12.215

6.030

9.500

10.380

11.250

12.150

17.130

10

6.020

9.510

10.380

11.250

12.150

17.100

9.510

10.380

11.250

12.160

6.020

9.480

10.400

11.260

12.150

17.040

11

6.000

9.470

10.390

11.260

12.140

17.000

9.490

10.370

11.240

12.160

Table 9: Results (second test per distillate) (% vol.)

1.2.3.      Repeatability and reproducibility calculations

The repeatability and reproducibility calculations were carried out in compliance with the standard NF X 06-041, September 1983, ISO 5725. Table 10 presents the standard deviation per cell (laboratory x sample).

Laboratory

C0

V0

V1

V2

V3

P0

1

0.0354

0.0252

0.0265

0.0173

0.0289

0.0000

2

0.0000

0.0058

0.3436

0.0100

0.0058

0.0000

3

0.0354

0.0058

0.0100

0.0115

0.0115

0.0071

4

0.0000

0.0115

0.0200

0.0231

0.0208

0.0919

5

0.0000

0.0462

0.0000

0.0000

0.0000

0.0000

6

0.0106

0.0046

0.0255

0.0052

0.0012

0.0523

7

0.0000

0.0569

0.0058

0.2050

0.0764

0.0636

8

0.0071

0.0231

0.0200

0.0321

0.0115

0.0212

9

0.0085

0.0176

0.0115

0.0040

0.0202

0.0035

10

0.0071

0.0058

0.0000

0.0000

0.0058

0.0212

11

0.0141

0.0100

0.0153

0.0115

0.0100

0.0283

Table 10: Dispersion table (standard deviation in % vol.)

Three cells presented strong dispersions (probability with Cochran test under 1%). These cells are represented in grey (Table 10). For laboratory 7 and the V3 product, the standard deviation of 0.0764 was maintained despite the Cochran test because it is on the same high level as that observed at the same laboratory for the V0 product.

An examination of the figures for each distillate (Table 9) led to the elimination of the following:

  • laboratory 2, product V1, value 10.990,
  • laboratory 7, product V2, value 11.440.

After eliminating these two values, the cell averages were calculated (laboratory x sample). The results are presented in Table 11.

Laboratory

C0

V0

V1

V2

V3

P0

1

5.9950

9.4733

10.3700

11.2700

12.1333

17.0800

2

6.0400

9.5033

10.3950

11.2800

12.2067

17.0500

3

5.9350

9.4567

10.3500

11.2733

12.1633

17.1950

4

6.0200

9.4567

10.3300

11.2367

12.1367

17.0050

5

5.9500

9.4033

10.2500

11.3000

12.0500

17.0000

6

6.0235

9.5103

10.3640

11.2720

12.2213

17.1570

7

5.7300

9.4133

10.2233

11.0850

12.0133

16.9650

8

5.9950

9.4267

10.3400

11.1733

12.0967

17.0950

9

6.0250

9.4983

10.4150

11.2930

12.2033

17.0865

10

6.0250

9.5067

10.3800

11.2500

12.1533

17.1150

11

6.0100

9.4800

10.3867

11.2533

12.1500

17.0200

Table 11: Table of averages (means in % vol.)

The figures given by laboratory 7 are generally low (Table 11). In the case of cider, the average for this laboratory is very far from the figures of the other laboratories (probability with the Dixon test under 1%). This laboratory's results for this product were eliminated.

Table 12 presents the calculated repeatability and reproducibility.

Sample

P

n

ABV

S2r

S2L

r

R

lC0

10

20

6.002

0.000298

0.001033

0.049

0.103

V0

11

33

9.466

0.000654

0.001255

0.072

0.124

V1

11

32

10.344

0.000255

0.003485

0.045

0.173

V2

11

32

11.249

0.000219

0.003113

0.042

0.163

V3

11

33

12.139

0.000722

0.003955

0.076

0.194

P0

11

22

17.070

0.001545

0.004154

0.111

0.214

Table 12: Repeatability and reproducibility calculations

Key:

p: number of laboratories retained

n: number of values retained

ABV: mean ABV (% vol.)

r: repeatability variance (% vol.)2

L: interlaboratory variance (% vol.)2

r: repeatability (% vol.)

R: reproducibility (% vol.)

Reproducibility increases with the sample's ABV (Figure 2). The increase in repeatability according to ABV is less noticeable and the overall repeatability was calculated according to the mean repeatability variance. As such, for the samples with an ABV of between 4 and 18% vol.,

Repeatability (r) = 0.067 (% vol.),

Reproducibility (R) = 0.0454 + 0.0105 x ABV.

1.2.4.      Accuracy with regard to additions carried out on wine

The regression line of alcoholic strength after addition according to the volume of ethanol added provides, for a volume of 0 mL, an estimation of the initial alcoholic strength of the product (Figure 3). This regression is carried out with mean values for each laboratory (Table 11).

Measurements carried out on initial products are not included in this estimation. This estimation was compared with the mean of the measurements taken on this product before additions; the intervals of relative confidence on these two estimations were calculated (Table 13).

LB

mean of measurements

UB

LB

estimation with measurements of products + additions

UB

9.440

9.466

9.492

9.392

9.450

9.508

Table 13: Additions to products

Key:

LB: lower bound of confidence interval at 95%

UB: upper bound of confidence level at 95%

The two confidence intervals cover a large overlapping centre. Thanks to the measurements on 'doped' samples, the alcoholic strength by volume of the initial product could be found.

1.2.5.      Conclusion of inter-laboratory tests

The repeatability and reproducibility indications by inter-laboratory tests provide the following equations, for products with ABVs of between 4% and 18% vol.:

 Repeatability (r) = 0.067 (% vol.),

 Reproducibility (R) = 0.0454 + 0.0105 x ABV (% vol.).

The Horwitz indicators, Hor and HoR, are low (Table 14). This therefore indicates good precision of the method in relation to the analyte measured.

Sample

C0

V0

V1

V2

V3

P0

n

20

33

32

32

33

22

p

10

11

11

11

11

11

ABV

6.0019

9.4662

10.3443

11.2492

12.1389

17.0699

r

0.0489

0.0724

0.0452

0.0419

0.0760

0.1113

sr

0.0173

0.0256

0.0160

0.0148

0.0269

0.0393

RSDr

0.2878

0.2702

0.1543

0.1316

0.2214

0.2303

RSDrH

2.0159

1.8822

1.8573

1.8340

1.8131

1.7224

Hor

0.1428

0.1436

0.0831

0.0718

0.1221

0.1337

R

0.1033

0.1237

0.1731

0.1634

0.1935

0.2136

sR

0.0365

0.0437

0.0612

0.0577

0.0684

0.0755

RSDR

0.6080

0.4616

0.5912

0.5131

0.5634

0.4423

RSDRH

3.0543

2.8519

2.8141

2.7788

2.7471

2.6097

HoR

0.1991

0.1619

0.2101

0.1847

0.2051

0.1695

 

Table 14: Summary table of method precision

Key:

n:

number of values retained

p:

number of laboratories retained

ABV:

mean ABV (% vol.)

r:

repeatability (% vol.)

sr:

repeatability standard deviation (% vol.)

RSDr:

repeatability coefficient of variation (sr x 100 / ABV) (%)

RSDrH:

Horwitz repeatability coefficient of variation (0.66 x RSDRH) (%)

Hor:

Horrat repeatability value (RSDr/RSDrH)

R:

reproducibility (% vol.)

sR:

reproducibility standard deviation (% vol.)

RSDR:

reproducibility coefficient of variation (sR x 100 / ABV) (%)

RSDRH:    Horwitz reproducibility coefficient of variation (2(1-0.5log(ABV))) (%)

HoR:         Horrat reproducibility value (RSDR/RSDRH)

The measurements carried out during inter-laboratory tests on wine with additions made it possible to find the value obtained before the addition. The values 9.45% and 9.47% vol. were found respectively.

 

Annex IV

Comparison of measurements carried out using a hydrostatic balance (Method C) with those obtained by electronic densimetry (Méthode B)

Using samples with alcoholic strengths between 4% vol. and 18% vol., the repeatability and reproducibility were measured using an inter-laboratory test. The alcoholic strength of the different samples as measured using a hydrostatic balance and using electronic densimetry were compared, including the repeatability and reproducibility values derived from the multi-year inter-comparison tests performed on a large scale.

  1. Samples: Wines with different densities and alcoholic strengths prepared monthly on an industrial scale, taken from a stock of bottles stored under normal conditions, and supplied anonymously to the laboratories.
  1. Laboratories: Laboratories participating in the monthly tests organised by Unione Italiana Vini (Verona, Italy) according to ISO 5725 (UNI 9225) regulations and the International Harmonized Protocol for the Proficiency Testing of Analytical Chemical Laboratories produced by the AOAC, ISO and IUPAC (J. AOAC Intern., 1993, 74/4), and ISO 43 and ILAC G13 guidelines. An annual report is provided by the above-mentioned organisation to all participants.
  1. Apparatus:
  • An electronic hydrostatic balance (with precision to 5 decimal places), equipped if possible with a data-processing device. 
  • An electronic densimeter, equipped if possible with an autosampler.
  1. Analyses

The measurement of the distillate was repeated twice.

  1. Results

Table 15 shows the results of the measurements obtained by the laboratories using a hydrostatic balance.

Table 16 shows the results obtained by the laboratories using an electronic densimeter.

  1. Evaluation of results

Interlaboratory reproducibility

A Horrat value of 1 usually indicates satisfactory interlaboratory reproducibility, whereas a value of more than 2 normally indicates unsatisfactory reproducibility, i.e. one that is too variable for analytical purposes or where the variation obtained is greater than that expected for the type of method employed.  Hor is also calculated and used to assess interlaboratory reproducibility, using the following approximation:

 

RSDr (Horwitz) = 0.66 RSDR (Horwitz) (this assumes the approximation that r= 0.66 R).

Table 17 shows the differences between the measurements obtained by laboratories using an electronic densimeter and those using a hydrostatic balance. Excluding the sample 2000/3, which has a very low alcohol strength and for which both techniques show poor reproducibility, good concordance is generally observed for the other samples.

  1. Precision parameters

Table 18 shows the overall averages of the precision parameters calculated from all monthly tests carried out between January 1999 and May 2001.

 In particular:

Repeatability (r) = 0.074 (% vol.) for the hydrostatic balance and

0.061 (% vol.) for electronic densimetry,

Reproducibility (R) =  0.229 (% vol.) for the hydrostatic balance and

0.174 (% vol.) for electronic densimetry.

Une image contenant table

Description générée automatiquement

Une image contenant table

Description générée automatiquement

Une image contenant table

Description générée automatiquement

 

Table 18: Precision parameters

MEAN

Hydrostatic balance

Electronic densimetry

 n1

441

557

 relative repeatability variance

0.309

0.267

 r

0.074

0.061

 sr

0.026

0.022

 relative reproducibility variance

2.948

2.150

 R

0.229

0.174

 sR

0.082

0.062

  1. Bibliography

Distillation:

  • HANAK, A., Chem. Zgt., 56, 1932, p. 984.
  • COLOMBIER, L., CLAIR, E., Ann. Fals. Fraudes, 29, 1936. p. 411.
  • POZZI-ESCOT, E., Ind. Agr. Aliment., 66, 1949, p. 119.
  • JAULMES, P., Analyse des vins, 1951, p. 49.
  • SCHNEYDER, J., Mitt. Klosterneuburg. Rebe und Wein., 10, 1960, p. 228.
  • SCHNEYDER, J., KASCHNITZ, L., Mitt. Klosterneuburg. Rebe und Wein., 15, 1965, p. 132.

Pycnometry:

  • JAULMES, P., Analyse des vins, 1951, p. 67.
  • JAULMES, P., Trav. Soc. Pharm. Montpellier., 12, 1952, p. 154.
  • JAULMES, P., Ann. Fals. Fraudes. 46, 1953, p. 84; 47, 1954, p. 191.
  • JAULMES, P., CORDIER, Mlle S., Trav. Soc. Pharm. Montpellier, 16, 1956, p. 115; 20, 1960, p. 137.
  • JAULMES, P., BRUN, S., Ann. Fals. Exp. Chim., 56, 1963. p. 129.

Hydrostatic balance:

  • Cabanis, M. T., Cassanas, G., Raffy, J. and Cabanis, J. C., 'Validation de la mesure du titre alcoométrique volumique', F.V. 1096, 1999.
  • Cabanis, M. T., Cassanas, G., Raffy, J. and Cabanis, J. C., 'Intérêt de la balance hydrostatique “nouvelle génération” pour la détermination du titre alcoométrique des vins et des boissons spiritueuses', Rev. Franç. Œnol., 177, July-August, 1999, pp. 28-31.
  • Versini, G. and Larcher, R., 'Comparison of wine density and alcoholic strength measurement by hydrostatic balance and electronic density–meter', Communication by the OIV "Methods of Analysis" Sub-Commission, Paris, 13-15 March 2002.
  • OIV Compendium of International Methods of Analysis of Wines and Musts E.g. Tables ??
  • International Office of Vine and Wine, Paris.
  • 'International Harmonized Protocol for the Proficiency Testing of Analytical Chemical Laboratories', J. AOAC Intern., 74/4, 1993.
  • ISO 5725 standards and ISO 43 guides.
  • OIV Resolution OENO 6/1999.
  • Horwitz, W., 'Protocol for the design, conduct and interpretation of method-performance studies', Pure and Applied Chemistry, 67/2, 1995, pp. 331-343.

Refractometry:

  • NEWTON, W., MURNO, F.L., Can. Chem. Met., 17, 1933, p. 119.
  • SAMPIETRO, C., INVERNIZZI, I., Ann. Chem. Appl., 30, 1940, p. 381.
  • FISCHL, P. F., Food Manufacture, 17, 1942, p. 198.
  • JAULMES, P., LAVAL, J. P., Trav. Soc. Pharm. Montpellier., 21, 1961, p. 21.
  • JAULMES, P., BRUN, S., LAVAL, J. P., Ann. Fals. Exp. Chim., 58, 1965, p. 304; Bull. Union National. OEnologues, 13, 1964, p. 17.
  • Alcoholic strength tables:
  • TABLES ALCOOMETRIQUES FRANCAISES, J.O. Républ. Française, 30 Dec 1884, P. 6895.
  • OIML, International Organisation of Legal Metrology, ‘International alcoholometric tables’, R22, 1973.
  • WINDISCH, K., based on LUNGE, G., BERL, E., Chem. techn. Untersuchungs Methoden, Berlin, 1924, 7th ed.; 4, 1893. p. 274.
  • OSBORNE, N. S., MCKELVY, E. C., BEARCE H. W., Bull. Bur. of Standards, Washington, 9, 1913, p. 328.
  • FROST, A. V., ‘Recherches dans le domaine du poids spécifique des mélanges d'alcool éthylique et d'eau’, Institute of Pure Chemical Reagents. U.S.S.R., No. 9, 1930, based on SPAEPEN, J.
  • HEIDE, C von der, MANDLEN, H., Z. Untersuch. Lebensm., 66, 1933, p. 338.
  • KOYALOVICS, B., 8th General Conference on Weights and Measures, Moscow, 1933.
  • FERTMANN, G. I., ‘Tables de renseignements pour le contrôle de la fabrication de l'alcool’, Pischerpoomizdat, Moscow, 1940.
  • REICHARD, O., Neue Alkohol u. Extract. Tafel 20°/20°, Verlag Hans Carl, Nürnberg, 1951.
  • JAULMES, P., MARIGNAN, R., Ann. Fals. Fraudes., 46, 1953, pp. 208 and 336.
  • SPAEPEN, J., Rev. de Métrologie, 1955, p. 411; Bull. belge de Métrologie, April No., 1955.
  • JAULMES, P., BRUN, S., Ann. Fals. Exp. Chim., 46, 1963, p. 143; 48, 1965, p. 58; 49, 1966, p. 35; 50, 1967, pp. 101-147; Trav. Soc. Pharm. Montpellier, 26, 1966, pp. 37 and 111.
  • JAULMES, P., MARIGNAN, R., Bull. O.I.V., 274, 1953, 28, 32.
  • JAULMES, P., BRUN, S., TEP, Y., Trav. Soc. Pharm., 28, 1968, p. 111.
  • KAWASAKI, T., MINOVA, Z., INAMATSU, T., ‘A new alcohometric specific gravity table’, National Research of Metrology, Tokyo, 1967.
  • TEP, Y., ‘Étude d'une table alcoométrique internationale’, Thèse Doc. Pharm, Montpellier, 1968.

Tables of correction

OIV-MA-AS312-02 Alcoholic strength by volume

TABLE I International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

Alcohol % by volume

to

0

1

2

3

4

5

6

7

8

9

10

11

999.64

1.50

998.14

1.44

996.70

1.40

995.30

1.35

993.95

1.30

992.65

1.24

991.41

1.19

990.22

1.14

989.08

1.10

987.98

1.05

986.93

1.00

985.93

0.95

-0.07

-0.06

-0.06

-0.06

-0.06

-0.06

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

1o

999.71

1.51

998.20

1.44

996.76

1.40

995.36

1.35

994.01

1.30

992.71

1.24

991.47

1.20

990.27

1.15

989:12

1.11

988.01

1.06

986.95

1.01

985.94

0.97

-0.05

-0.05

-0.04

-0.04

-0.04

-0.04

-0.03

-0.03

-0.02

-0.02

-0.01

0.00

2o

999.76

1.51

998.25

1.45

996.80

1.40

995.40

1.35

994.05

1.30

992.75

1.25

99150

1.20

990.30

1.16

989.14

1.11

988.03

1.07

986.96

1.02

985.94

0.98

-0.03

-0.03

4.03

-0.02

-0.02

-0.02

-0.02

-0.01

-0.01

0.00

0.01

0.02

3o

999.79

1.51

998.28

1.45

996.83

1.41

995.42

1.35

994.07

1.30

992.77

1.25

991.52

1.21

990.31

1.16

989.15

1.12

988.03

1.08

986.95

1.03

985.92

1.00

-0.02

-0.02

-0.01

-0.02

-0.01

-0.01

0.00

0.00

0.01

0.02

0.03

0.04

4o

999.81

1.51

998.30

1.46

996.84

1.40

995.44

1.36

994.08

1.30

992.78

1.26

991.52

1.21

990.31

1.17

989.14

1.13

988:01

1.09

986.92

1.04

985.88

1.00

0.00

0.00

0.00

0.00

0.01

0.02

0.02

0.02

0.02

0.03

0.04

0.05

5o

999.81

1.51

998.30

1.46

996.84

1.40

995.44

1.37

994.07

1.31

992.76

1.26

991.50

1.21

990.29

1.17

989.12

1.14

987.98

1.10

986.88

1.05

985.83

1.01

0.01

0.01

0.01

0.02

0.01

0.02

0.03

0.04

0.05

0.05

0.05

0.06

6o

999.80

1.51

998.29

1.46

996.83

1.41

995.42

1.36

994.06

1.32

992.74

1.27

991.47

1.22

990.25

1.18

989:07

1.14

987.93

1.10

986.83

1.06

985.77

1.03

0.03

0.03

0.03

0.03

0.04

0.04

0.04

0.05

0.06

0.07

0.08

0.09

7o

999.77

1.51

998.26

1.46

996.80

1.41

995.39

1.37

994.02

1.32

99270

1.27

99143

1.23

99020

1.19

989.01

1.15

987:86

1.11

986.75

1.07

985.68

1.03

0.05

0.04

0.04

0.05

0.05

0.05

0.05

0.06

0.06

0.07

0.08

0.09

8o

999.72

1.50

998.22

1.46

996.76

1.42

995.34

1.37

993.97

1.32

992.65

1.27

991.38

1.24

990.14

1.19

988.95

1.16

987.79

1.12

986.67

1.08

985.59

1.05

0.05

0.06

0.06

0.06

0.06

0.06

0.07

0.07

0.08

0.09

0.10

0.11

9o

999.67

1.51

998.16

1.46

996.70

1.42

995.28

1.37

993.91

1.32

992:59

1.28

99131

1.24

990.07

1.20

988.87

1.17

987.70

1.13

986.57

1.09

985.48

1.06

0.07

0.07

0.07

0.07

0.07

0.08

0.08

0.09

0.09

0.10

0.11

0.12

10°

999.60

1.51

998.09

1.46

996.63

1.42

995.21

1.37

993.84

1.33

992.51

1.28

991.23

1.25

989.98

1.20

988.78

1.17

987.60

1.14

986.46

1.10

985.36

1.06

0.09

0.09

0.09

0.08

0.09

0.09

0.10

0.10

0.11

0.11

0.12

0.13

11o

999.51

1.51

998.00

1.46

996.54

1.41

995.13

1.38

993.75

1.33

992.42

1.29

991.13

1.25

989.88

1.21

988.67

1.18

987.49

1.15

986.34

1.11

985.23

1.07

0.10

0.09

0.09

0.10

0.10

0.11

0.11

0.11

0.12

0.13

0.13

0.14

12o

999.41

1.50

997.91

1.46

996.45

1.42

995.03

1.38

993.65

1.34

992.31

1.29

991.02

1.25

989.77

1.22

988.55

1.19

987.36

1.15

986.21

1.12

98.509

1.09

0.11

0.11

0.11

0.11

0.11

0.11

0.12

0.12

0.13

0.14

0.15

0.16

13o

999.30

1.50

997.80

1.46

996.34

1.42

994.92

1.38

993.54

1.34

992.20

1.30

990.90

1.25

989.65

1.23

988.42

1.20

987.22

1.16

986.06

1.13

984.93

1.09

0.12

0.12

0.13

0.13

0.13

0.13

0.14

0.14

0.15

0.16

0.16

0.16

14o

999.18

1.50

997.68

1.46

996.22

1.43

994.79

1.38

993.41

1.34

992.07

1.30

990.77

1.26

989.51

1.23

988.28

1.21

987.07

1.17

985.90

1.13

984.77

1.11

0.14

0.14

0.13

0.13

0.14

0.14

0.15

0.16

0.16

0.17

0.18

0.18

15o

999.05

1.51

997.54

1.46

996.08

1.42

994.66

1.38

993.28

1.35

991.93

1.30

990.63

1.27

989.36

1.24

988.12

1.21

986.91

1.18

985.73

1.14

984.59

1.12

0.14

0.14

0.15

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.19

0.19

16o

998.90

1.50

997.40

1.46

995.94

1.43

994.51

1.38

993.13

1.35

991.78

1.31

990.47

1.27

989.20

1.25

987.95

1.21

986.74

1.19

985.55

1.15

984.40

1.13

0.16

0.16

0.16

0.16

0.17

017

0.18

0.18

0.19

0.19

0.20

0.20

17o

998.74

1.50

997.24

1.46

995.78

1.43

994.35

1.38

992.97

1.36

991.61

1.31

990.30

1.28

989.02

1.25

987.17

1.22

986.55

1.19

985.36

1.16

984.20

1.14

0.17

0.17

0.16

0.17

0.17

0.18

0.18

0.19

0.20

0.21

0.22

0.22

18o

998.57

1.50

997.07

1.46

995.61

1.42

994.19

1.39

992.80

1.36

991.44

1.32

990.12

1.28

988.84

1.26

987.58

1.23

986.35

1.20

985.15

1.17

983.98

1.14

0.18

0.18

0.19

0.19

0.19

0.19

0.20

0.20

0.20

0.21

0.21

0.22

19o

998.39

1.50

996.89

1.46

995.43

1.43

994.00

1.39

992.61

1.36

991.25

1.32

989.93

1.29

988.64

1.26

987.38

1.23

986.15

1.21

984.94

1.10

983.76

1.16

0.19

0.19

0.19

0.19

0.19

0.20

0.20

0.21

0.22

0.23

0.24

0.24

20o

998.20

1.50

996.70

1.46

995.24

1.43

993.81

1.39

992.42

1.36

991.06

1.33

989.73

1.29

988.44

1.27

987.17

1.24

985.93

1.22

984.71

1.19

983.52

1.16

TABLE I (continued) International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

 

Alcohol % by volume

to

0

1

2

3

4

5

6

7

8

9

10

11

20o

998.20

1.50

996.70

1.46

995.24

1.43

993.81

1.39

992.42

1.36

991.06

1.33

989.73

1.29

988.44

1.27

987.17

1.24

985.93

1.22

984.71

1.19

983.52

1.16

0.20

0.20

0.20

0.20

0.21

0.21

0.21

0.22

0.22

0.23

0.24

0.24

21o

998.00

1.50

996.50

1.46

995.04

1.43

993.61

1.40

992.21

1.36

990.85

1.33

989.52

1.30

988.22

1.27

986.95

1.25

985.70

1.23

984.47

1.19

983.28

1.18

0.21

0.21

0.21

0.21

0.21

0.22

0.22

0.23

0.24

0.24

0.24

0.26

22o

997.79

1.50

996.29

1.46

994.83

1.43

993.40

1.40

992.00

1.37

990.63

1.33

989.30

1.31

987.99

1.28

986.71

1.25

985.46

1.23

984.23

1.21

983.02

1.18

0.22

0.22

023

0.23

0.23

0.23

0.24

0.24

0.24

0.25

0.26

0.25

23o

997.57

1.50

996.07

1.47

994.60

1.43

993.17

1.40

991.77

1.37

990.40

1.34

989.06

1.31

987.75

1.28

986.47

1.26

985.21

1.24

983.97

1.20

982.77

1.20

0.24

0.23

0.23

0.23

0.24

0.24

0.24

0.25

0.26

0.26

0.27

0.29

24o

997.33

1.49

995.94

1.47

994.37

1.43

992.94

1.41

991.53

1.37

990.16

1.34

988.82

1.32.

987.50

1.29

986.21

1.26

984.95

1.25

983.70

1.22

982.48

1.20

0.24

0.25

0.24

0.25

0.24

0.25

0.26

0.26

0.26

0.27

0.28

0.28

25o

997.09

1.50

995.59

1.46

994.13

1.44

992.69

1.40

991.29

1.38

989.91

1.35

988.56

1.32

987.24

1.29

985.95

1.27

  984.68

1.26

983.42

1.22

982.20

1.21

0.25

0.25

0.26

0.25

0.26

0.26

0.26

0.26

0.28

0.28

0.28

0.30

26o

996.84

1.50

995.34

1.47

993.87

1.43

992.44

1.41

991.03

1.38

989.65

1.35

988.30

1.32

986.98

1.31

985.67

1.27

984.40

1.26

983.14

1.24

981.90

1.22

0.26

0.26

0.26

0.27

0.27

0.27

0.27

0.28

0.28

0.29

0.30

0.30

27o

996.58

1.50

995.68

1.47

993.61

1.44

992.17

1.41

990.76

1.38

989.38

1. 35

988.03

1.33

986.70

1.31

985.39

1.28

984.11

1.27

982.84

1.24

981.60

1.23

0.27

0.27

0.27

0.27

0.28

0.28

0.29

0.29

0.29

0.30

0.31

0.32

28o

996.31

1.50

994.81

1.47

993.34

1.44

991.90

1.42

990.48

1.38

989.10

1.36

987.74

1.33

986.41

1.31

985.10

1.29

983.81

1.28

982.53

1.25

981.28

1.23

0.28

0.28

0.28

0.29

0.28

0.29

0.29

0.30

0.31

0.31

0.31

0.32

29o

996.03

1.50

994.53

1.47

993.06

1.45

991.61

1.41

990.20

1.39

988.81

1.36

987.45

1.34

986.11

1.32

984.79

1.29

983.50

1.28

982.22

1.26

980.96

1.24

0.28

0.29

0.29

0.29

0.30

0.30

0.31

0.31

0.31

0.32

 0.32

0.33

30o

995.75

1.51

994.24

1.47

992.77

1.45

991.32

1.42

989.90

1.39

988.51

1.37

987.14

1.34

985.80

1.32

984.48

1.30

983.18

1.28

981.90

1.27

980.63

1.25

0.30

0.30

0.30

0.30

0.31

    0.31

0.31

0.31

0.32

0.33

0.34

0.34

31o

995.45

1.51

993.94

1.47

992.47

1.45

991.02

1.43

989.59

1.39

988.20

1.37

986.83

1.34

985.49

1.33

984.16

1.31

982.85

1.29

981.56

1.27

980.29

1.26

0.31

0.31

0.31

0.32

0.31

0.32

0.32

0.33

0.33

0.34

0.35

0.36

strength by volume

30o

995.14

1.51

993.63

1.47

992.16

1.46

990.70

1.42

989.28

1.40

987.88

1.37

986.51

1.35

985.16

1.33

983.83

1.32

982.51

1.30

981.21

1.28

979.93

1.26

0.31

0.31

0.32

0.32

0.32

0.33

0.33

0.34

0.35

0.35

0.35

0.35

33o

994.93

1.51

993.32

1.48

991.84

1.46

990.38

1.42

988.96

1.41

987.55

1.37

986.18

1.36

984.82

1.34

983.48

1.32

982.16

1.30

980.86

1.28

979.58

1.28

0.32

0.33

0.33

0.33

0.35

0.34

0.35

0.35

0.34

0.35

0.36

0.37

34o

994.51

1.52

992.99

1.48

991.51

1.46

990.05

1.44

988.61

1.40

987.21

1.38

985.83

1.36

984.47

1.33

983.14

1.33

981.81

1.31

980.50

1.29

979.21

1.28

0.33

0.33

0.34

0.35

0.34

0.35

0.35

0.35

0.36

0.36

0.36

0.37

35o

994.18

1.52

992.66

1.49

991.17

1.47

989.70

1.43

988.27

1.41

986.86

1.38

985.48

1.36

984.12

1.34

982.78

1.33

981.45

1.31

980.14

1.30

978.84

1.29

0.34

0.35

0.35

0.35

0.35

0.35

0.35

0.36

0.36

0.37

0.37

0.38

36o

993.84

1.53

992.31

1.49

990.82

1.47

989.35

1.43

987.92

1.41

986.51

1.38

985.13

1.37

983.76

1.34

982.42

1.34

981.08

1.31

979.77

1.31

978.46

1.29

0.35

0.35

0.36

0.35

0.36

0.36

 0.37

0.37

0.38

0.37

0.39

0.39

37o

993.49

1.53

991.96

1.50

990.46

1.46

989.00

1.44

987.56

1.41

986.15

1.39

984.76

1.37

983.39

1.35

982.04

1.33

980.71

1.33

97938

1.31

978.07

1.30

0.36

0.36

0.36

0.37

0.37

0.37

0.37

0.37

0.38

0.39

0.38

0.39

38o

993.13

1.53

991.60

1.50

990.10

1.47

988.63

1.44

987.19

1.41

985.78

1.39

984.39

1.37

983.02

1.36

981.66

1.34

980.32

1.32

979.00

1.32

977.68

1.31

0.36

0.37

0.37

0.37

0.38

0.38

0.38

0.39

0.38

0.39

0.40

0.40

39o

992.77

1.54

991.23

1.50

989.73

1.47

988.26

1.45

986.81

1.41

985.40

1.39

994.01

1.38

982.63

1.35

981.28

1. 35

979.93

1.33

978.60

1.32

977.28

1.32

0.37

0.37

0.38

0.39

0.38

0.39

0.39

0.39

0.40

0.39

0.40

0.41

400

992.40

1.54

990.86

1.51

989.35

1.48

987.87

1.44

986.43

1.42

985.01

1.39

983.62

1.38

982.24

1.36

980.88

1.34

979.54

1.34

978.20

1.33

976.87

1.32

TABLE I (continued) International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

 

to

Alcohol % by volume

10

11

12

13

14

15

16

17

18

19

20

21

0

986.93

1.00

985.93

0.95

984.98

0.92

984.06

0.88

983.18

0.84

982.34

0.80

981.54

0.78

980.76

0.75

980.01

0.73

979.28

0.72

978.56

0.70

977.86

0.70

-0.02

-0.01

0.01

0.01

0.03

0.04

0.07

0.08

0.10

0.12

0.14

0.17

1

986.95

1.01

995.94

0.97

984.97

0.92

984.05

0.90

983.15

0.85

982.30

0.83

981.47

0.79

980.68

0.77

979.91

0.75

979.16

0.74

978.42

0.73

977.69

0.72

-0.01

0.00

0.01

0.03

0.04

0.07

0.08

0.10

0.12

0.14

0.16

0.18

2

986.96

1.02

985.94

0.98

984.96

0.94

984.02

0.91

983.11

0.98

982.23

0.84

981.39

0.81

980.58

0.79

979.79

0.77

979.02

0.76

978.26

0.75

977.51

0.74.

0.01

0.02

0.04

0.05

0.06

0.07

0.09

0.11

0.13

0.15

0.17

0.19

3

986 95

1.03

985.92

1.00

984.92

0.95

983.97

0.92

983.05

0.89

982.16

0.86

981.30

0.83

980.47

0.81

979.66

0.79

978.87

0.78

978.09

0.77

977.32

0.77

0.03

0.04

0.04

0.06

0.07

0.09

0.10

0.12

0.14

0.16

0.18

0.20

4

986 92

1.04

985.88

1.00

984.88

0.97

983.91

0.93

982.98

0.91

982.07

0.87

981.20

0.85

980.35

0.83

979.52

0.81

978.71

0.80

977.91

0.79

977.12

0.79

0.04

0.05

0.06

0.07

0.09

0.10

0.12

0.14

0.15

0.17

0.19

0.22

5

986.88

1.05

985.83.

1.01

984.82

0.98

983.84

0.95

982.89

0.92

981.97

0.89

981.08

0.87

980.21

0.84

979.37

0.83

978.54

0.82

977.72

0.82

976 90

0.80

0.05

0.06

0.08

0.09

0.10

0.12

0.13

0.14

0.17

0.19

0.21

0.22

6

986.93

1.06

985.77

1.03

984.74

0.99

983.75

0.96

982.79

0.94

981.85

0.90

980.95

0.88

980.07

0.87

979.20

0.85

978.35

0.84

977.51

0.83

976.68

0.83

0.08

0.09

0.09

0.10

0.12

0.13

0.15

0.16

0.18

0.19

0.21

0.23

7

986.75

1.07

995.68

1.03

984.65

1.00

983.65

0.98

982.67

0.95

981.72

0.92

980.80

0.89

979.91

0.89

979.02

0.86

978.16

0.86

977.30

0.85

976.45

0.85

0.08

0.09

0.11

0.13

0.13

0.14

0.15

0.18

0.19

0.21

0.23

0.25

8

986.67

1.08

985.59

1.05

984.54

1.02

983.52

0.98

982.54

0.96

981.58

0.93

980.65

0.92

979.73

0.90

978.83

0.88

977.95

0.88

977.07

0.87

976.20

0.87

0.10

0 11

0.12

0.12

0.14

0.16

0.18

0.19

0.21

0.22

0.24

0.26

9

986.57

1.09

985.48

1.06

984.42

1.02

983.40

1.00

982.40

0.98

981.42

0.95

980.47

0.93

979.54

0.92

978.62

0.89

977.73

0.90

976.83

0.89

975.94

0.89

0.11

0.12

0.12

0.14

0.16

0.17

0.18

0.20

0.20

0.23

0.24

0.26

10

986.46

1.10

985.36

1.06

984.30

1.04

983.26

1.02

982.24

0.99

981.25

0.96

980.29

0.95

979.34

0.92

978.42

.0.92

977.50

0.91

976.59

0.91

975.68

0.91

0.12

0.13

0.14

0.16

0.16

0.17

0.19

0.20

0.23

0.25

0.27

0.29

11

986.34

1.11

985.23

1.07

984.16

1.06

983.10

1.02

982.08

1.00

981.08

0.98

980.10

0.96

979.14

0.95

978.19

0.94

977.25

0.93

976.32

0.93

975.39

0.92

0.13

0.14

0.16

0.16

1

0.18

0.19

0.21

0.22

0 24

0.25

0.27

0.28

12

986.21

1.12

985.09

1.09

984.00

1.06

982.94

1.04

981.90

1.01

980.89

1.00

979.89

0.97

978.92

0.97

977.95

0.95

977.00

0.95

976.05

0.94

975.11

0.95

0.15

0.16

0.16

0.18

0.19

0.20

0.21

0.23

0 24

0.26

0.28

0.30

13

986.06

1.13

984.93

1.09

983.84

1.08

982.76

1.05

981.71

1.02

980.69

1.01

979.68

0.99

978.69

0.98

977.71

0.97

976.74

0.97

975.77

0.96

974.81

096

0.16

0.16

0.18

0.18

0.20

0.22

0.23

0.24

0.26

0.27

0.28

0.30

14

985.90

1.13

994.77

1.11

983.66

1.08

982.58

1.07

981.51

1.04

980.47

1.02

979.45

1.00

978.45

1.00

977.45

0.98

976.47

0.98

975.49

0.98

975.51

0.98

0.17

0.18

0.19

0.20

0.21

0.22

0.24

0.25

0.26

0.28

0.30

0.32

15

985.73

1.14

994.59

1.12

983.47

1.09

982.38

1.08

981.30

1.05

960.25

1.04

979.21

1.01

978.20

1.01

977.19

1.00

976.19

1.00

975.19

1.00

974.19

1.00

0.18

0.19

0.20

0.22

0.22

0.24

0.24

0.27

0.28

0.30

0.31

0.32

16

985.55

1.15

984.40

1.13

983.27

1.11

982.16

1.08

981.08

1.07

980.01

1.04

978.97

1.04

977.93

1.02

976.91

1.02

975.89

1.01

974.88

1.01

973.87

1.02

0.19

0.20

0.21

0.22

0.23

0.24

0.26

0.27

0.29

0.30

0.32

0.33

17

985.136

1.16

984.20

1.14

983.06

1.12

981.94

1.09

980.85

1.08

979.77

1.06

978.71

1.05

977.66

1.04

976.62

1.03

975.59

1.03

974.56

1.02

973.54

1.04

0.21

0.22

0.22

0 23

0.25

0.26

0.27

0.28

0.29

0.31

0.32

0.35

18

985.15

1.17

983.76

1.14

982.84

1.13

981.71

1.11

980.60

1.09

979.51

1.07

978.44

1.06

977.38

1.05

976.33

1.05

975.28

1.04

974.24

1.05

973.19

1.05

0.21

0.22

0.24

0.24

0.25

0.26

0.28

0.29

0.31

0.32

0.34

0.35

19

984.94

1.18

983.76

1.16

982.60

1.13

981.47

1.12

980.35

1.10

979.25

1.09

978.16

1.07

977.09

1.07

976.02

1.06

974.96

1.06

973.90

1.06

972.84

1.06

0.23

0.24

0.24

0.26

0.27

0.28

0.29

0.30

0.31

0.33

0.34

0.36

20

984.71

1.19

983.52

1.16

982.36

1.15

981.21

1.13

980.08

1.11

978.97

1.10

977.87

1.08

1976.79

1.08

1975.71

1.08

974.63

1.07

973.56

l.08

972.48

1.08

TABLE I (continued) International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

Alcohol % by volume

to

10

11

12

13

14

15

16

17

18

19

20

21

20o

984.71

1.19

983.52

1.16

982.36

1.15

981.21

1.13

980.08

1.11

978.97

1.10

977.87

1.08

976.79

1.08

975.71

1.08

974.63

1.07

973.56

1.08

972.48

1.08

0.24

0.24

0.26

0.26

0.27

0.28

0.29

0.31

0.33

0.34

0.36

0.37

21o

994.47

1.19

983.28

1.18

982.10

1.15

980.95

1.14

978.81

1.12

978.69

1.11

977.58

1.10

976.48

1.10

975.38

1.09

974.29

1.09

973.20

1.09

972.11

1.09

0.24

0.26

0.28

0.29

0.30

0.31

0.33

0.33

0.35

0.35

0.36

0.37

22o

984.23

1.21

983.02

1.18

981.84

1.17

980.67

1.15

979.52

1.13

978.39

1.12

977.27

1.12

976.15

1.10

975.05

1.11

973.94

1.10

972.84

1.10

971.74

1.12

0.26

0.26

0.27

0.28

0.29

0.31

0.32

0.33

0.35

0.35

0.37

0.39

23o

983.97

1.20

982.77

1.20

981.57

1.18

980.39

1.16

979.23

1.15

978.08

1.13

976.95

1.13

975.82

1.12

974.70

1.11

973.59

1.12

972.47

1.12

971.47

1.12

0.27

0.29

0.29

0.29

0.30

0.31

0.33

0.33

0.35

0.37

0.38

0.40

24o

983.70

1.22

982.48

1.20

981.28

1.18

980.10

1.17

978.93

1.16

977.77

1.15

976.62

1.13

975.49

1.14

974.35

1.13

973.22

1.13

972.09

1.14

970.95

1.14

0.28

0.28

0.29

0.31

0.32

0.33

0.33

0.35

0.36

0.37

0.39

0.40

25o

983.42

1.22

982.20

1.21

980.99

1.20

979.79

1.18

978.61

1.17

977.44

1.15

976.29

1.15

975.14

1.15

973.99

1.14

972.85

1.15

971.70

1.15

970.55

1.16

0.28

0.30

0.31

0.31

0.32

0.33

0.35

0.36

0.37

0.39

0.40

0.41

26o

983.14

1.24

981.90

1.22

980.68

1.20

979.48

1.19

978.29

1.18

977.11

1.17

975.94

1.16

974.78

1.16

973.62

1.16

972.46

1.16

971.30

1.16

970.14

1.17

0.30

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.38

0.39

0.40

0.42

27o

982.84

1.24

981.60

1.23

980.37

1.21

979.16

1.20

977.96

1.19

976.77

1.18

975.59

1.17

974.42

1.18

973.24

1.17

972.07

1.17

970.90

1.18

969.72

1.18

0.31

0.32

0.32

0.33

0.34

0.35

0.36

0.38

0.38

0.40

0.41

0.43

28o

982.53

1.25

981.28

1.23

980.05

1.22

978.83

1.21

977.62

1.20

976.42

1.19

975.23

1.19

974.04

1.18

972.86

1.19

971.67

1.18

970.49

1.20

969.29

1.20

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.40

0.40

0.42

0.43

29o

982.22

1.26

980.96

1.24

979.72

1.23

978.49

1.22

977.27

1.21

976.06

1.20

974.86

1.20

973.66

1.20

972.46

1.19

971.27

1.20

970.07

1.21

968.86

1.22

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.40

0.41

0.43

0.44

0.45

30o

981.90

1.27

980.63

1.25

979.38

1.24

978.14

1.23

976.91

1.22

975.69

1.21

974.48

1.22

973.26

1.21

972.05

1.21

970.84

1.21

969.63

1.22

968.41

1.23

0.34

0.34

0.35

0.36

0.37

0.38

0.40

0.40

0.41

0.42

0.44

0.45

31o

981.56

1.27

980.29

1.26

979.03

1.25

977.78

1.24

976.54

1.23

975.31

1.23

974.08

1.22

972.86

1.22

971.64

1.22

970.42

1.23

969.19

1.23

967.96

1.24

0.35

0.36

0.36

0.37

0.38

0.39

0.39

0.40

0.42

0.43

0.44

0.46

32o

981.21

1.28

979.93

1.26

978.67

1.26

977.41

1.25

976.16

1.24

974.92

1.23

973.69

1.23

972.46

1.24

971.22

1.23

969.99

1.24

968.75

1.25

967.50

1.25

0.35

0.35

0.37

0.37

0.38

0.39

0.40

0.42

0.42

0.44

0.45

0.46

33o

980.86

1.28

979.58

1.28

978.30

1.26

977.04

1.26

975.78

1.25

974.53

1.24

973.29

1.25

972.04

1.24

970.80

1.25

969.55

1.25

968.30

1.26

967.04

1.27

0.36

0.37

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.46

0.47

34o

980.50

1.29

979.21

1.28

977.93

1.27

976.66

1.27

975.39

1.26

974.13

1.25

972.88

1.26

971.62

1.25

970.37

1.26

969.11

1.27

967.84

1.27

966.57

1.29

0.36

0.37

0.38

0.39

0.39

0.40

0.42

-

0.42

0.44

0.46

0.46

0.48

35o

980.14

1.30

978.94

1.29

977.55

1.28

976.27

1.27

975.00

1.27

973.73

1.27

972.46

1.26

971.20

1.27

969.93

1.28

968.65

127

967.38

1.29

966.09

1.30

0.37

0.38

0.38

0.39

0.40

0.41

0.42

0.44

0.45

0.45

0.47

0.48

36o

979.77

1.31

978.46

1.29

977.17

1.29

975.88

1.28

974.60

1.28

973.32

1.28

972.04

1.28

970.76

1.28

969.48

1.28

968.20

1.29

966.91

1.30

965.61

1.32

0.39

0.39

0.40

0.40

0.41

0.42

0.43

0.44

0.45

0.47

0.48

0.49

37o

978.38

1.31

978.07

1.30

976.77

1.29

975.48

1.29

974.19

1.29

972.90

1.29

971.61

1.29

970.32

1.29

969.03

1.30

967.73

1.30

966.43

1.31

965.12

1.33

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.49

0.50

38o

979.00

1.32

977.68

1.31

976.37

1.30

975.07

1.30

973.77

1.30

972.47

1.30

971.17

1.30

969.87

1.30

968.57

1.31

967.26

1.32

965.94

1.32

964.62

1.34

0.40

0.40

0.41

0.42

0.42

0.43

0.44

0.45

0.47

0.48

0.49

0.50

39o

978.60

1.32

977.28

1.32

975.96

1.31

974.65

1.30

973.35

1.31

972.04

1.31

970.73

1.31

969.42

1.32

968.10

1.32

966.78

1.33

965.45

1.33

964.12

1.36

0.40

0.41

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.51

40o

978.20

1.33

976.87

1.32

975.55

1.32

974.23

1.31

972.92

1.32

971.60

1.52

970.28

1.32

968.96

1.33

967.63

1.33

966.30

1.34

964.96

1.35

963.61

1.37

TABLE I (continued) International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

 

Alcohol % by volume

to

20

21

22

23

24

25

26

27

28

29

30

31

0

978.56

0.70

977.86

0.70

977.16

0.69

976.47

0.71

975.76

0.71

975.05

0.72

974.33

0.75

973.58

0.77

972.81

0.80

972.01

0.83

971.18

0.87

970.31

0.90

0.14

0.17

0.19

0.22

0.24

0.26

0.29

0.31

0.34

0.36

0.39

0.41

1

978.42

0.73

977.69

0.72

976.97

0.72

976.25

0.73

975.52

0.73

974.79

0.75

974.04

0.77

973.27

0.80

972.47

0182

971.65

0.86

970.79

0.89

969.90

0.92

0.16

0.18

0.20

0.23

0.25

0.28

0.30

0.32

0.34

0.37

0.39

0.41

2

978.26

0.75

977.51

0.74

976.77

0.75

976.02

0.75

975.27

0.76

974.51

0.77

973.74

0.79

972.95

0.82

972.13

0.85

971.28

0.88

970.40

0.91

969.49

0.95

0.17

0.19

0.22

0.23

0.26

0.28

0.31

0.33

0.36

0.38

0.40

0.42

3

978.09

0.77

977.32

0.77

976.55

0.76

975.79

0.78

975.01

0.78

974.23

0.80

973.43

0.81

972.62

0.85

971.77

0.87

970.90

0.90

970.00

0.93

969.07

0.98

0.18

0.20

0.22

0.25

0.27

0.29

0.31

0.34

0.36

0.38

0.40

0.43

4

977.91

0.79

977.12

0.79

976.33

0.79

975.54

0.80

974.94

0.80

973.94

0.82

973.12

0.84

972.28

0.87

971.41

0.89

970.52

0.92

969.60

0.96

968.64

1.00

0.19

0.22

0.23

0.26

0.27

0.30

0.33

0.35

0.37

0.39

0.42

0.44

5

977.72

0.82

976.90

0.80

976.10

0.82

975.28

0.81

974.47

0.83

973.64

0.85

972.79

0.86

971.93

0.89

971.04

0.91

970.13

0.95

969.18

0.98

968.20

1.01

0.21

0.22

0.25

0.26

0.29

0.31

0.33

0.35

0.37

0.40

0.42

0.44

6

977.51

0.83

976.68

0.83

975.85

0.83

975.02

0.84

974.18

0.85

973.33

0.87

972.46

0.86

971.58

0.91

970.67

0.94

969.73

0.97

968.76

1.00

967.76

1.03

0.21

0.23

0.25

0.28

0.30

0.32

0.34

0.36

0.36

0.40

0.42

0.44

7

977.30

0.85

976.45

0.85

975.60

0.86

974.74

0.86

973.88

0.87

973.01

0.89

972.12

0.90

971.22

0.93

970.20

0.96

969.33

0.99

968.34

1.02

967.32

1.06

0.23

0.25

0.27

0.28

0.31

0.33

0.35

0.37

0.40

0.42

0.43

0.46

8

977.07

0.87

976.20

0.87

975.33

0.87

974.46

0.89

973.57

0.89

972.68

0.91

971.77

0.92

970.85

0.96

969.89

0.98

968.91

1.00

967.91

1.05

966.86

1.07

0.24

0.26

0.28

0.30

0.31

0.34

0.35

0.38

0.39

0.41

0.44

0.46

9

976.83

0.89

97.594

0.89

97.505

0.89

974.16

0.90

973.26

0.92

972.34

0.92

971.42

0.95

970.47

0.97

969.50

1.00

968.50

1.03

967.47

1.07

966.40

1.09

0.24

0.26

0.28

0.30

0.33

0.34

0.37

0.39

0.41

0.43

0.45

0.46

10

976.59

0.91

975.68

0.91

974.77

0.91

973.86

0.93

972.93

0.93

972.00

0.95

971.05

0.97

970.08

0.99

969.09

1.02

968.07

1.05

967.02

1.08

965.94

1.12

0.27

0.29

0.30

0.33

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.47

11

976.32

0.93

975.39

0.92

974.47

0.94

973.53

0.94

972.59

0.95

971.64

0.97

970.67

0.99

969.68

1.01

968.67

1.04

967.63

1.07

966.56

1.09

965.47

1.13

0.27

0.28

0.31

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.45

0.48

12

976.05

0.94

975.11

0.95

974.16

0.95

973.21

0.96

972.25

0.97

971.28

0.99

970.29

1.01

969.28

1.03

968.25

1.06

967.19

1.08

966.11

1.12

964.99

1.15

0.28

030

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

13

975.77

0.96

974.81

0.96

973.85

0.97

972.88

0.98

971.90

0.99

970.91

1.01

969.90

1.03

968.87

1.05

967.82

1.08

966.74

1.10

965.64

1.14

964.50

1.17

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.41

0.43

0.45

0.47

0.49

14

975.49

0.98

974.51

0.98

973.53

0.99

972.54

1.00

971.54

1.01

970.53

1.03

969.50

1.04

968.46

1.07

967.39

1.10

966.29

1.12

965.17

1.16

964.01

1.19

0.30

0.32

0.34

0.35

0.37

0.39

0.40

0.42

0.44

0.46

0.48

0.49

15

975.19

1.00

974.19

1.00

973.19

1.00

972.19

1.02

971.17

1.03

970.14

1.04

969.10

1.06

968.04

1.09

966.95

1.12

965.83

1.14

964.69

1.17

963.52

1.21

0.31

0.32

0.34

0.36

0.37

0.39

0.41

0.43

0.45

0.46

0.48

0.51

16

974.88

1.01

973.87

1.02

972.85

1.02

971.83

1.03

970.80

1.05

969.75

1.06

968.69

1.08

967.61

1.11

966.50

1.13

965.37

1.16

964.21

1.20

963.01

1.22

0.32

0.33

0.35

0.37

0.39

0.40

0.42

0.44

0.45

0.48

0.50

0.50

17

974.56

1.02

973.54

1.04

972.50

1.04

971.46

1.05

970.41

1.06

969.35

1.08

968.27

1.10

967.17

1.12

966.05

1.16

964.89

1.18

963.71

1.20

962.51

1.24

0.32

0.35

0.36

0.37

0.39

0.41

0.43

0.45

0.47

0.48

0.49

0.52

18

974.24

1.05

973.19

1.05

972.14

1.05

971.09

1.07

970.02

1.08

968.94

1.10

967.84

1.12

966.72

1.14

965.58

1.17

964.41

1.19

963.22

1.23

961.99

1.25

0.34

0.35

0.36

0.39

0.40

0.42

0.43

0.45

0.47

0.48

0.50

0.52

19

973.90

1.06

972.84

1.06

971.78

1.08

970.70

1.08

969.62

1.10

968.52

1.11

967.41

1.14

966.27

1.16

965.11

1.18

963.93

1.21

962.72

1.25

961.47

1.27

0.34

0.36

0.38

0.39

0.41

0.42

0.45

0.46

0.47

0.49

0.51

0.52

20

973.56

1.08

972.48

1.08

971.40

1.09

970.31

1.10

969.21

1.11

968.10

1.14

966.96

1.15

965.81

1.17

964.64

1.20

963.44

1.23

962.21

1.26

960.95

1.29

TABLE I (continued) International alcoholic strength at 20°C

Table of apparent densities of ethanol‑water mixtures ‑ Pyrex pycnometer Densities at t°C. corrected for air buoyancy

Alcohol % by volume

t o

20

21

22

23

24

25

26

27

28

29

30

31

20

973.56

1.08

972.48

1.08

971.40

1.09

970.31

1.10

969.21

1.11

968.10

1.14

966.96

1.15

965.81

1.17

964.64

1.20

963.44

1.23

962.21

1.26

960.95

1.29

0.36

0.37

0.38

0.40

0.42

0.44

0.45

0.46

0.49

0.50

0.52

0.53

21

973.20

1.09

972.11

1.09

971.02

1.11

969.91

1.12

968.79

1.13

967.66

1.15

966.51

1.16

965.35

1.20

964.15

1.21

962.94

1.25

961.69

1.27

960.42

1.31

0.36

0.37

0.40

0.41

0.42

0.44

0.45

0.48

0.49

0.51

0.52

0.54

22

972.84

1.10

971.74

1.12

970.62

1.12

969.50

1.13

968.37

1.15

967.22

1.16

966.06

1.19

964.87

1.21

963.66

1.23

962.43

1.26

961.17

1.29

959.88

1.32

0.37

0.39

0.40

0.42

0.43

0.45

0.47

0.48

0.49

0.51

0.53

0.55

23

972.47

1.12

971.35

1.13

970.22

1.14

969.08

1.14

967.94

1.17

966.77

1.18

965.59

1.20

964.39

1.22

963.17

1.25

961.92

1.28

960.64

1.31

959.33

1.33

0.38

0.40

0.41

0.42

0.44

0.45

0.47

0.49

0.51

0.52

0.54

0.55

24

972.09

1.14

970.95

1.14

969.81

1.15

968.66

1.16

967.50

1.18

966.32

1.20

965.12

1.22

963.90

1.24

962.66

1.26

961.40

1.30

960.10

1.32

958.78

1.35

0.39

0.40

0.42

0.43

0.45

0.47

0.48

0.49

0.51

0.53

0.54

0.55

25

971.70

1.15

970.55

1.16

969.39

1.16

968.23

1.18

967.05

1.20

965.85

1.21

964.64

1.23

963.41

1.26

962.15

1.28

960.87

1.31

959.56

1.33

958.23

1.37

0.40

0.41

0.42

0.44

0.46

0.47

0.49

0.50

0.51

0.53

0.54

0.57

26

971.30

1.16

970.14

1.17

968.97

1.18

967.79

1.20

966.59

1.21

965.38

1.23

964.15

1.24

962.91

1.27

961.64

1.30

960.34

1.32

959.02

1.36

957.66

1.38

0.40

0.42

0.43

0.45

0.46

0.48

0.49

0.51

0.53

0.54

0.56

0.56

27

970.90

1.18

969.72

1.18

968.54

1.20

967.34

1.21

966.13

1.23

964.90

1.24

963.66

1.26

962.40

1.29

961.11

1.31

959.80

1.34

958.46

1.36

957.10

1.40

0.41

0.43

0.45

0.46

0.47

0.48

0.50

0.52

0.54

0.56

0.57

0.59

28

970.49

1.20

969.29

1.20

968.09

1.21

966.88

1.22

965.66

1.24

964.42

1.26

963.16

1.28

961.88

1.31

960.57

1.33

959.24

1.35

957.89

1.38

956.51

1.41

0.42

0.43

0.45

0.47

0.49

0.50

0.52

0.53

0.53

0.55

0.56

0.58

29

970.07

1.21

968.86

1.22

967.64

1.23

966.41

1.24

965.17

1.25

963.92

1.28

962.64

1.29

961.35

1.31

960.04

1.35

958.69

1.36

957.33

1.40

955.93

1.42

0.44

0.45

0.46

0.47

0.49

0.50

0.51

0.53

0.55

0.55

0.58

0.58

30

969.63

1.22

968.41

1.23

967.18

1.24

965.94

1.26

964.68

1.26

963.42

1.29

962.13

1.31

960.82

1.33

959.49

1.35

958.14

1.39

956.75

1.40

955.35

1.44

0.44

0.45

0.46

0.48

0.49

0.51

0.52

0.53

0.55

0.57

0.58

0.60

31

969.19

1.23

967.96

1.24

966.72

1.26

965.46

1.27

964.19

1.28

962.91

1.30

961.61

1.32

960.29

1.35

958.94

1.37

957.57

1.40

956.17

1.42

954.75

1.44

0.44

0.46

0.47

0.48

0.50

0.51

0.53

0.54

0.55

0.57

0.58

0.59

32

968.75

1.25

967.50

1.25

966.25

1.27

964.98

1.29

963.69

1.29

962.40

1.32

961.08

1.33

959.75

1.36

958.39

1.39

957.00

1.41

955.59

1.43

954.16

1.46

0.45

0.46

0.48

0.49

0.50

0.52

0.53

0.55

0.57

0.57

0.59

0.61

33

968.30

1.26

967.04

1.27

965.77

1.28

964.49

1.30

963.19

1.31

961.88

1.33

960.55

1.35

959.20

1.38

957.82

1.39

956.43

1.43

955.00

1.45

953.55

1.47

0.46

0.47

0.49

0.50

0.51

0.53

0.54

0.56

0.56

0.59

0.59

0.60

34

967.84

1.27

966.57

1.29

965.28

1.29

963.99

1.31

962.68

1.33

961.35

1.34

960.01

1.37

958.64

1.38

957.26

1.42

95584

1.43

954.41

1.46

952.95

1.49

0.46

0.48

0.49

0.51

0.52

0.53

0.55

0.56

0.58

0.58

0.60

0.62

35

967.38

1.29

966.09

1.30

964.79

1.31

963.48

1.32

962.16

1.34

960.82

1.36

959.46

1.38

958.08

1.40

956.68

1.42

955.26

1.45

953.81

1.48

952.33

1 50

0.47

0.48

0.50

0.51

0.53

0.54

0.55

0.57

0.58

0.60

0.61

0.62

36

966.91

1.30

965.61

1.32

964.29

1.32

962.97

1.34

961.63

1.35

960.28

1.37

958.91

1.40

957.51

1.41

956.10

1.44

954.66

1.46

953.20

1.49

951.71

1.51

0.48

0.49

0.50

0.52

0.53

0.55

0.56

0.57

0.59

0.60

0.61

0.62

37

966.43

1.31

965.12

1.33

963.79

1.34

962.45

1.35

961.10

1.37

959.73

1.38

958.35

1.41

956.94

1.43

955.51

1.45

954.06

1.47

952.59

1.50

951.09

1.53

0.49

0.50

0.51

0.52

0.54

0.55

0.57

0.58

0.59

0.60

0.62

0.63

38

965.94

1.32

964.62

1.34

963.28

1.35

961.93

1.37

960.56

1.38

959.18

1.40

957.78

1.42

956.36

1.44

954.92

1.46

953.46

1.49

951.97

1.51

950.4

1.54

0.49

0.50

0.52

0.53

0.54

0.56

0.57

0.58

0.60

0.61

0.62

0.64

39

965.45

1.33

964.12

1.36

962.76

1.36

961.40

1.38

960.02

1.40

958.62

1.41

957.21

1.43

955.78

1.46

954.32

1.47

952.85

1.50

951.35

1.53

949.82

1.55

0.49

0.51

0.52

0.54

0.55

0.56

0.58

0.59

0.60

0.62

0.63

0.64

40

964.96

1.35

963.61

1.37

962.24

1.38

960.86

1.39

959.47

1.41

958.06

1.43

956.63

1.44

955.19

1.47

953.72

1.49

952.23

1.51

950.72

1.54

949.18

1.57

TABLE II International alcoholic strength at 20oC

Table of Corrections to be applied to the apparent alcoholic strength to correct for the effect of temperature

Add or subtract from the apparent alcoholic strength at toC (ordinary glass alcohol meter) the correction indicated below

Apparent alcoholic strength at  toC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Temperatures

0

To add

0.76

0.77

0.82

0.87

0.95

1.04

1.16

1.31

1.49

1.70

1.95

2.26

2.62

3.03

3.49

4.02

4.56

1o

0.81

0.83

0.87

0.92

1.00

1.09

1.20

1.35

1.52

1.73

1.97

2.26

2.59

2.97

3.40

3.87

4.36

2o

0.85

0.87

0.92

0.97

1.04

1.13

1.24

1.38

1.54

1.74

1.97

2.24

2.54

2.89

3.29

3.72

4.17

3o

0.88

0.91

0.95

1.00

1.07

1.15

1.26

1.39

1.55

1.73

1.95

2.20

2.48

2.80

3.16

3.55

3.95

4o

0.90

0.92

0.97

1.02

1.09

1.17

1.27

1.40

1.55

1.72

1.92

2.15

2.41

2.71

3.03

3.38

3.75

5o

0.91

0.93

0.98

1.03

1.10

1.17

1.27

1.39

1.53

1.69

1.87

2.08

2.33

2.60

2.89

3.21

3.54

6o

0.92

0.94

0.98

1.02

1.09

1.16

1.25

1.37

1.50

1.65

1.82

2.01

2.23

2.47

2.74

3.02

3.32

7o

0.91

0.93

0.97

1.01

1.07

1.14

1.23

1.33

1.45

1.59

1.75

1.92

2.12

2.34

2.58

2.83

3.10

8o

0.89

0.91

0.94

0.98

1.04

1.11

1.19

1.28

1.39

1.52

1.66

1.82

2.00

2.20

2.42

2.65

2.88

9o

0.86

0.88

0.91

0.95

1.01

1.07

1.14

1.23

1.33

1.44

1.57

1.71

1.97

2.05

2.24

2.44

2.65

10o

0.82

0.84

0.87

0.91

0.96

1.01

1.08

1.16

1.25

1.35

1.47

1.60

1.74

1.89

2.06

2.24

2.43

11o

0.78

0.79

0.82

0.86

0.90

0.95

1.01

1.08

1.16

1.25

1 36

1.47

1.60

173

1.88

2.03

2.20

12o

0.72

0.74

0.76

0.79

0.83

0.88

0.93

0.99

1.07

1.15

1.24

1.34

1.44

1.56

1.69

1.82

1.96

13o

0.66

0.67

0.69

0.72

0.76

0.80

0.84

0.90

0.96

1.03

1.11

1.19

1.28

1.38

1.49

1.61

1.73

14o

0.59

0.60

0.62

0.64

0.67

0.71

0.74

0.79

0.85

0.91

0.97

1.04

1.12

1.20

1.29

1.39

1.49

15o

0.51

0.52

0.53

0.55

0.58

0.61

0.64

0.68

0.73

0.77

0.83

0.89

0995

1.02

1.09

1.16

1.24

16o

0.42

0.43

0.44

0.46

0.48

0.50

0.53

0956

0.60

0963

0.67

0.72

0.77

0.82

0.88

0.94

1.00

17o

0.33

0.33

0.34

0.35

0.37

0.39

0.41

0.43

0.46

0.48

0.51

0.55

0.59

0.62

0.67

0.71

0.75

18o

0.23

0.23

0.23

0.24

0.25

0.26

0.27

0.29

0.31

0.33

0.35

0.37

0.40

0.42

0.45

0.48

0.51

19o

0.12

0.12

0.12

0.12

0.13

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.23

0.24

0.25

TABLE II (continued)

International alcoholic strength at 20oC

Table of Corrections to be applied to the apparent alcoholic strength to correct for the effect of temperature

Add or subtract from the apparent alcoholic strength at toC (ordinary glass alcohol meter) the correction indicated below

Apparent alcoholic strength at  toC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Temperatures

21o

To subtract

0.13

0.13

0.13

0.14

0.14

0.15

0.16

0.17

0.18

0.19

0.19

0.20

0.22

0.23

0.25

0.26

22o

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.34

0.36

0.37

0.39

0.41

0.44

0.47

0.49

0.52

23o

0.40

0.41

0.42

0.44

0.45

0.47

0.49

0.51

0.54

0.57

0.60

0.63

0.66

0.70

0.74

0.78

24o

0.55

0.56

0.58

0.60

0.62

0.64

0.67

0.70

0.73

0.77

0.81

0.85

0.89

0.94

0.99

1.04

25o

0.69

0.71

0.73

0.76

0.79

0.82

0.85

0.89

0.93

0.97

1.02

1.07

1.13

1.19

1.25

1.31

26o

0.85

0.87

0.90

0.93

0.96

1.00

1.04

1.08

1.13

1.18

1.24

1.30

1.36

1.43

1.50

1.57

27o

1.03

1.07

1.11

1.15

1.19

1.23

1.28

1.34

1.40

1.46

1.53

1.60

1.68

1.76

1.84

28o

1.21

1.25

1.29

1.33

1.38

1.43

1.49

1.55

1.62

1.69

1.77

1.85

1.93

2.02

2.11

29o

1.39

1.43

1.47

1.52

1.58

1.63

1.70

1.76

1.84

1.92

2.01

2.10

2.19

2.29

2.39

30o

1.57

1.61

1.66

1.72

1.78

1.84

1.91

1.98

2.07

2.15

2.25

2.35

2.45

2.56

2.67

31o

1.75

1.80

1.86

1.92

1.98

2.05

2.13

2.21

2.30

2.39

2.49

2.60

2.71

2.83

2.94

32o

1.94

2.00

2.06

2.13

2.20

2.27

2.35

2.44

2.53

2.63

2.74

2.86

2.97

3.09

3.22

33o

2.20

2.27

2.34

2.42

2.50

2.58

2.67

2.77

2.88

2.99

3.12

3.24

3.37

3.51

34o

2.41

2.48

2.56

2.64

2.72

2.81

2.91

3.02

3.13

3.25

3.38

3.51

3.65

3.79

35o

2.62

2.70

2.78

2.86

2.95

3.05

3.16

3.27

3.39

3.51

3.64

3.78

3.93

4.08

36o

2.83

2.91

3.00

3.09

3.19

3.29

3.41

3.53

3.65

3.78

3.91

4.05

4.21

4.37

37o

3.13

3.23

3.33

3.43

3.54

3.65

3.78

3.91

4.04

4.18

4.33

4.49

4.65

38o

3.36

3.47

3.57

3.68

3.79

3.91

4.03

4.17

4.31

4.46

4.61

4.77

4.94

39o

3.59

3.70

3.81

3.93

4.05

4.17

4.44

4.58

4.74

4.90

5.06

5.06

5.23

40o

3.82

3.94

4.06

4.18

4.31

4.44

4.57

4.71

4.86

5.02

5.19

5.36

5.53

TABLE II (continued)

International alcoholic strength at 20oC

Table of Corrections to be applied to the apparent alcoholic strength to correct for the effect of temperature

Add or subtract from the apparent alcoholic strength at toC (ordinary glass alcohol meter) the correction indicated below

Apparent alcoholic strength at  toC

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Temperatures

0o

To add

3.49

4.02

4.56

5.11

5.65

6.16

6.63

7.05

7.39

7.67

7.91

8.07

8.20

8.30

8.36

8.39

8.40

1o

3.40

3.87

4.36

4.86

5.35

5.82

6.26

6.64

6.96

7.23

7.45

7.62

7.75

7.85

7.91

7.95

7.96

2o

3.29

3.72

4.17

4.61

5.05

5.49

5.89

6.25

6.55

6.81

7.02

7.18

7.31

7.40

7.47

7.51

7.53

3o

3.16

3.55

3.95

4.36

4.77

5.17

5.53

5.85

6.14

6.39

6.59

6.74

6.86

6.97

7.03

7.07

7.09

4o

3.03

3.38

3.75

4.11

4.48

4.84

5.17

5.48

5.74

5.97

6.16

6.31

6.43

6.53

6.59

6.63

6.66

5o

2.89

3.21

3.54

3.86

4.20

4.52

4.83

5.11

5.35

5.56

5.74

5.89

6.00

6.10

6.16

6.20

6.23

6o

2.74

3.02

3.32

3.61

3.91

4.21

4.49

4.74

4.96

5.16

5.33

5.47

5.58

5.67

5.73

5.77

5.80

7o

2.58

2.83

3.10

3.36

3.63

3.90

4.15

4.38

4.58

4.77

4.92

5.05

5.15

5.24

5.30

5.34

5.37

8o

2.42

2.65

2.88

3.11

3.35

3.59

3.81

4.02

4.21

4.38

4.52

4.64

4.74

4.81

4.87

4.92

4.95

9o

2.24

2.44

2.65

2.86

3.07

3.28

3.48

3.67

3.84

3.99

4.12

4.23

4.32

4.39

4.45

4.50

4.53

10o

2.06

2.24

2.43

2.61

2.80

2.98

3.16

3.33

3.48

3.61

3.73

3.83

3.91

3.98

4.03

4.08

4.11

11o

1.88

2.03

2.20

2.36

2.52

2.68

2.83

2.98

3.12

3.24

3.34

3.43

3.50

3.57

3.62

3.66

3.69

12o

1.69

1.82

1.96

2.10

2.24

2.38

2.51

2.64

2.76

2.87

2.96

3.04

3.10

3.16

3.21

3.25

3.27

13o

1.49

1.61

1.73

1.84

1.96

2.08

2.20

2.31

2.41

2.50

2.58

2.65

2.71

2.76

2.80

2.83

2.85

14o

1.29

1.39

1.49

1.58

1.68

1.78

1.88

1.97

2.06

2.13

2.20

2.26

2.31

2.36

2.39

2.42

2.44

15o

1.09

1.16

1.24

1.32

1.40

1.48

1.56

1.64

1.71

1.77

1.83

1.88

1.92

1.96

1.98

2.01

2.03

16o

0.88

0.94

1.00

1.06

1.12

1.19

1.25

1.31

1.36

1.41

1.46

1.50

1.53

1.56

1.58

1.60

1.62

17o

0.67

0.71

0.75

0.80

0.84

0.89

0.94

0.98

1.02

1.05

1.09

1.12

1.14

1.17

1.18

1.20

1.21

18o

0.45

0.48

0.51

0.53

0.56

0.59

0.62

0.65

0.68

0.70

0.72

0.74

0.76

0.78

0.79

0.80

0.81

19o

0.23

0.24

0.25

0.27

0.28

0.30

0.31

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.41

TABLE II (continued)

International alcoholic strength at 20oC

Table of Corrections to be applied to the apparent alcoholic strength to correct for the effect of temperature

Add or subtract from the apparent alcoholic strength at toC (ordinary glass alcohol meter) the correction indicated below

Apparent alcoholic strength at  toC

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Temperatures

21o

To subtract

0.23

0.25

0.26

0.28

0.29

0.30

0.31

0.33

0.34

0.35

0.35

0.37

0.38

0.38

0.39

0.39

0.40

22o

0.47

0.49

0.52

0.55

0.57

0.60

0.62

0.65

0.67

0.70

0.72

0.74

0.75

0.76

0.78

0.79

0.80

23o

0.70

0.74

0.78

0.82

0.86

0.90

0.93

0.97

1.01

1.04

1.07

1.10

1.12

1.15

1.17

1.18

1.19

24o

0.94

0.99

1.04

1.10

1.15

1.20

1.25

1.29

1.34

1.39

1.43

1.46

1.50

1.53

1.55

1.57

1.59

25o

1.19

1.25

1.31

1.37

1.43

1.49

1.56

1.62

1.68

1.73

1.78

1.83

1.87

1.90

1.94

1.97

1.99

26o

1.43

1.50

1.57

1.65

1.73

1.80

1.87

1.94

2.01

2.07

2.13

2.19

2.24

2.28

2.32

2.35

2.38

27o

1.68

1.76

1.84

1.93

2.01

2.10

2.18

2.26

2.34

2.41

2.48

2.55

2.61

2.66

2.70

2.74

2.77

28o

1.93

2.02

2.11

2.21

2.31

2.40

2.49

2.58

2.67

2.76

2.83

2.90

2.98

3.03

3.08

3.13

3.17

29o

2.19

2.29

2.39

2.50

2.60

2 70

2.81

2.91

3.00

3.09

3.18

3.26

3.34

3.40

3.46

3.51

3.55

30o

2.45

2.56

2.67

2.78

2.90

3.01

3.12

3.23

3.34

3.44

3.53

3.62

3.70

3.77

3.84

3.90

3.95

31o

2.71

2.83

2.94

3.07

3.19

3.31

3.43

3.55

3.67

3.78

3.88

3.98

4.07

4.15

4.22

4.28

4.33

32o

2.97

3.09

3.22

3.36

3.49

3.62

3.74

3.87

4.00

4.11

4.22

4.33

4.43

4.51

4.59

4.66

4.72

33o

3.24

3.37

3.51

3.65

3.79

3.92

4.06

4.20

4.33

4.45

4.57

4.68

4.79

4.88

4.97

5.04

5.10

34o

3.51

3.65

3.79

3.94

4.09

4.23

4.37

4.52

4.66

4.79

4.91

5.03

5.15

5.25

5.34

5.42

5.49

35o

3.78

3.93

4.08

4.23

4.38

4.53

4.69

4.84

4.98

5.12

5.26

5.38

5.50

5.61

5.71

5.80

5.87

36o

4.05

4.21

4.37

4.52

4.68

4.84

5.00

5.16

5.31

5.46

5.60

5.73

5.86

5.97

6.08

6.17

6.25

37o

4.33

4.49

4.65

4.82

4.98

5.15

5.31

5.48

5.64

5.80

5.95

6.09

6.22

6.33

6.44

6.54

6.63

38o

4.61

4.77

4.94

5.12

5.29

5.46

5.63

5.80

5.97

6.13

6.29

6.43

6.57

6.69

6.81

6.92

7.01

39o

4.90

5.06

5.23

5.41

5.59

5.77

5.94

6.12

6.30

6.47

6.63

6.78

6.93

7.06

7.18

7.29

7.39

40o

5.19

5.36

5.53

5.71

5.90

6.08

6.26

6.44

6.62

6.80

6.97

7.13

7.28

7.41

7.54

7.66

7.76

TABLE III International alcoholic strength at 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength in %

to

0

1

2

3

4

5

6

7

8

9

10

11

0

999.34

1.52

997.82

1.45

996.37

1.39

994.98

1.35

993.63

1.29

992.34

1.24

991.10

1.18

989.92

1.15

988.77

1.09

987.68

1.05

986.63

1.00

985.63

0.96

--0.09

-0.09

-0.09

-0.08

-0.08

-0.08

-0.07

-0.05

-0.05

-0.04

-0.03

-0.02

1

999.43

1.52

997.91

1.45

996.46

1.40

995.06

1.35

993.71

1.29

992.42

1.25

991.17

1.20

989.97

1.15

988.82

1.10

987.72

1.06

986.66

1.01

985.65

0.97

--0.06

-0.06

-0.06

-0.06

-0.06

-0.05

-0.05

-0.04

-0.03

-0.02

0.02

-0.01

2

999.49

1.52

997.97

1.40

996.52

1.40

995.12

1.35

993.77

1.30

992.47

1.25

991.22

1.21

990.01

1.16

988.85

1.11

987.74

1.06

986.68

1.02

985.66

0.98

-0.05

-0.05

-0.04

-0.04

-0.04

-0.04

-0.03

-0.03

-0.03

-0.02

0.00

0.01

3

999.54

1.52

998.02

1.46

996.56

1.40

995.16

1.35

993.81

1.30

992.51

1.26

991.25

1.21

990.04

1.16

988.88

1.12

987.76

1.08

986.68

1.03

985.65

0.99

-0.03

-0.03

-0.03

-0.03

-0.02

-0.02

-0.02

-0.01

0.00

0.01

0.01

0.02

4

999.57

1.52

998.05

1.46

996.59

1.40

995.19

1.36

993.83

1.30

992.53

1.26

991.27

1.22

990.05

1.17

98888

1.13

987.75

1.08

986.67

1.04

985.63

1.00

-0.02

-0.02

-0.02

-0.02

-0.02

-0.01

0.00

0.00

0.00

0.01

0.02

0.03

5

999.59

1.52

998.07

1.46

996.61

1.40

995.21

1.36

993.85

1.31

992.54

1.27

991.27

1.22

990.05

1.17

988.88

1.14

987.74

1.09

986.65

1.05

985.60

1.02

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.02

0.03

0.03

0.04

0.06

6

999.59

1.52

998.07

1.46

996.61

1.41

995.20

1.36

993.84

1.31

992.53

1.27

991.26

1.23

990.03

1.18

988.85

1.14

987.71

1.10

986.61

1.07

985.54

1.02

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.04

0.05

0.06

7

999.58

1.52

998.06

1.46

996.60

1.41

995.19

1.36

99383

1.32

992.51

1.27

991.24

1.23

990.01

1.19

988.82

1.15

987.67

1.11

986.56

1.08

985.48

1.04

0.03

0.03

0.03

0.03

0.04

0.04

0.05

0.05

0.06

0.07

0.07

0.08

8

999.55

1.52

998.03

1.46

996.57

1.41

995.16

1.37

993.79

1.32

992.47

1.28

991.19

1.23

989.96

1.20

988.76

1.16

987.60

1.11

986.49

1.09

985.40

1.05

0.04

0.04

0.04

0.04

0.04

0.04

0.05

0.06

0.06

0.06

0.08

0.08

9

99951

1.52

997.99

1.46

996.53

1.41

995.12

1.37

993.75

1.32

992.43

1.29

991.14

1.24

989.90

1.20

988.70

1.16

987.54

1.13

986.41

1.09

985 32

1.06

0.06

0.06

0.06

0.06

0.06

0.07

0.07

0.07

0.08

0.09

0.10

0.11

10

999.45

1.52

997.93

1.46

996.47

1.41

995.06

1.37

993.69

1.33

992.36

1.29

991.07

1.24

989.83

1.21

988.62

1.17

987.45

1.14

986.31

1.10

985.21

1.07

0.07

0.06

0.06

0.07

0.07

0.07

0.07

0.08

0.09

0.10

0.10

0.11

11

999.38

1.51

997.87

1.46

996.41

1.42

994.99

1.37

993.62

1.33

992.29

1.29

991.00

1.25

989.75

1.22

988.53

1.18

987.35

1.14

986.21

1.11

985.10

1.08

0.09

0.09

0.09

0.09

0.09

0.09

0.10

0.11

0.11

0.11

0.1 2

0.13

12

999.29

1.51

997.78

1.46

996.32

1.42

994.90

1.37

993.53

1.33

992.20

1.30

990.90

1.26

989.64

1.22

988.42

1.18

987.24

1.15

986.109

1.12

984.97

1.09

0.09

0.09

0.09

0.09

0.10

0.10

0.10

0.10

0.11

0.12

0.13

0.14

13

999.20

1.51

997.69

1.46

996.23

1.42

994.81

1.38

993.43

1.33

992.10

1.30

990.80

1.26

989.54

1.23

988.31

1.19

987.12

1.16

985.96

1.13

984.83

1.10

0.11

0.11

0.11

0.11

0.11

0.12

0.12

0.13

0.13

0 14

0.15

0.16

14

999.09

1.51

997.58

1.46

996.12

1.42

994.70

1.38

993.32

1.34

991.98

1.30

990.68

1.27

989.41

1.23

988.18

1.20

986.98

1.17

985.81

1.14

984.67

1.11

0.12

0.12

0.12

0.12

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.16

15

998.97

1.51

997.46

1.46

996.00

1.42

994.58

1.38

993.20

1.34

991.86

1.31

990.55

1.27

989.28

1.24

988.04

1.20

986.94

1.18

985.66

1.15

984.51

1.12

0.13

0.13

0.13

0.13

0.14

0.14

0.14

0.15

0.15

0.17

0.17

0.18

16

998.84

1.51

997.33

1.46

995.87

1.42

994.45

1.39

993.06

1.34

991.72

1.31

990.41

1.28

989.13

1.24

987.89

1.22

986.67

1.18

985.49

1.16

984.33

1.13

0.14

0.14

0.14

0.14

0.14

0.15

0.15

0.15

0.16

0.17

0.17

0.18

17

998.70

1.51

997.19

1.46

995.73

1.42

994.31

1.39

992.92

1.35

991.57

1.31

990.26

1.28

988.98

1.25

987.73

1.22

986.50

1.18

985.32

1.17

984.15

1.14

0.15

0.15

0.16

0.16

0.16

0.16

0.17

0.17

0.18

0.18

0.19

0.19

18

998.55

1.51

997.04

1.47

995.57

1.42

994.15

1.39

992.76

1.35

991.41

1.32

990.09

1.28

988.81

1.26

987.55

1.23

986.32

1.19

985.13

1.17

983.96

1.15

0.17

0.16

0.16

0.16

0.16

0.16

0.17

0.18

0.18

0.19

0.20

0.21

19

998.38

1.50

996.88

1.47

995.41

1.42

993.99

1.39

992.60

1.35

991.25

1.33

989.92

1.29

988.63

1.26

987.37

1.24

986 13

1.20

98493

1.18

983.75

1.16

0.18

0.18

0.18

0.18

0.19

0.19

0.19

0.20

0.21

0.22

0.22

0.23

20

998.20

1.50

996.70

1.47

995.23

1.42

993.81

1.40

992.41

1.35

991.06

1.33

989.73

1.30

988.43

1.27

987.16

1.24

985 92

1.21

984.71

1.19

983 52

1.17

TABLE III (continued) International alcoholic strength at 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength in %

0

1

2

3

4

5

6

7

8

9

10

11

20

998.20

1.50

996.70

1.47

995.23

1.42

993.81

1.40

992.41

1.35

991.06

1.33

989.73

1.30

988.43

1.27

987.16

1.24

985.92

1.21

984.71

1.19

983.52

1.17

0.19

0.19

0.19

0.19

0.19

0.20

0.20

0.21

0.21

0.22

0.23

0.23

21

998.01

1.50

996.51

1.47

995.04

1.42

993.62

1.40

992.22

136

990.86

1.33

989.53

1.31

988.22

1.27

986.95

1.25

985.70

1.22

984.48

1.19

983.29

1.17

0.20

0.20

0.19

0.20

0.20

0.20

0.21

0.21

0.22

0.22

0.23

0.24

22

987.81

1.50

996.31

1.46

994.85

1.43

993.42

1.40

992.02

1.36

990.66

1.34

989.32

1.31

988.01

1.28

986.73

1.25

985.48

1.23

984.25

1.20

983.05

1.18

0.21

0.21

0.21

0.21

0.21

0.22

0.22

0.22

0.23

0.24

0.24

0.25

23

997.60

1.50

996.10

1.46

994.64

1.43

993.21

1.40

991.81

1.37

990.44

1.34

989.10

1.31

987.79

1.29

986.50

1.26

985.24

1.23

984.01

1.21

982.80

1.19

0.21

0.21

0.22

0.22

0.22

0.22

0.23

0.23

0.23

0.24

0.25

0.26

24

997.39

1.50

995.89

1.47

994.42

1.43

992.99

1.40

991.59

1.37

990.22

1.35

988.87

1.31

987.56

1.29

986.27

1.27

985.00

1.24

98376

1.22

982.54

1.20

0.23

0.23

0.23

0.23

0.24

0.24

0.24

0.25

0.25

0.25

0.26

0.27

25

997.16

1.50

995.66

1.47

994.19

1.43

992.76

1.41

991 35

1.37

989.98

1.35

988.63

1.32

987.31

1.29

986.02

1.27

984.75

1.25

983.50

1.23

982.27

1.21

0.23

0.23

0.23

0.24

0.24

0.24

0.24

0.25

0.26

0.27

0.27

0.28

26

996.93

1.50

995.43

1.47

993.96

1.44

992.52

1.41

991.11

1.37

989.74

1.35

988.39

1.33

987.06

1.30

985.76

1.28

984.48

1.25

983.23

1.24

981.99

1.22

0.25

0.25

0.25

0.25

0.25

0.26

0.26

0.26

0.27

0.28

0.29

0.29

27

996.68

1.50

995.18

1.47

993.71

1.44

992.27

1.41

990.86

1.38

989.48

1.35

988.13

1.33

986.80

1.31

985.49

1.29

994.20

1.26

982.94

1.24

981.70

1.23

0.25

0.25

0.26

0.26

0.26

0.26

0.27

0.28

0.28

0.28

0.29

0.30

28

996.43

1.50

994.93

1.48

993.45

1.44

992.01

1.41

990.60

1.38

989.22

1.36

987.86

1.34

986.52

1.31

985.21

1.29

983.92

1.27

982.65

1.25

981.40

1.23

0.26

0.27

0.27

0.27

027

0.28

0.28

0.28

0.29

0.29

0.30

0.31

29

996 17

1.51

994.66

1.48

993 18

1.44

991.74

1.41

990.33

1.39

988.94

1.36

98758

1.34

98624

1.32

984.92

1.29

983.63

1.28

98235

1.26

98109

1.24

0.27

0.27

0.27

0.28

0.28

0.28

0.28

0.29

0.29

0.30

0.31

0.32

30

995.90

1.51

994.39

1.48

992.91

1.45

991.46

1.41

990.05

1.39

988.66

1.37

987.29

1.34

985.95

1.32

984.63

1.30

983.33

1.29

982.04

1.27

980.77

1.25

0.29

0.29

0.29

0.29

0.30

0.30

0.30

0.31

0.31

0.32

0.32

0.32

31

995.61

151

994.10

1.48

992.62

1.45

991.17

1.42

989.75

1.39

988.36

1.37

986.99

1.35

985.64

1.33

984.31

1.30

983.01

1.29

981.72

1.27

980.45

1.26

0.29

0.29

0.29

0.29

0.30

0.31

0.31

0.31

0.31

0.32

0.33

0.34

32

995.32

1.51

993.81

1.48

992.33

1.45

990.88

1.42

989.45

1.40

988.05

1.37

986.68

1.35

985.33

1.33

984.00

1.31

982.69

1.30

981.39

1.28

980.11

1.26

0.30

0.31

0.31

0.31

0.31

0.31

0.31

0.32

0.33

0.33

0.34

0.34

33

995.02

1.52

993.50

1.48

992.02

1.45

990.57

1.43

989.14

1.40

987.74

1.37

986.37

1.36

985.01

1.34

983.67

1.31

982.36

1.31

981.05

1.28

979.77

1 27

0.30

0.31

0.31

0.31

0.31

0.32

0.33

0.33

0.33

0.34

0.34

0.35

34

994.72

1.53

993.19

1.48

991.71

1.45

990.26

1.43

988.83

1.41

987.42

1.38

98604

1.36

984.68

1.34

983.34

1.32

982.02

1.31

980.71

1.29

979.42

1.28

0.32

0.32

0.32

0.33

0.33

0.33

0.33

0.33

0.33

0.34

0.34

0.35

35

994.40

1.53

992.87

1.48

991.39

1.46

989.93

1.43

988.50

1.41

987.09

1.38

985.71

1.36

984.35

1.34

983.01

1.33

981.68

1.31

980.37

1.30

979.07

1.29

0.32

0.32

0.33

0.33

0.33

0.33

0. 34

0.34

0.35

0.35

0.36

0.37

36

994.08

1.53

992.55

1.49

991.06

1.46

989.60

1.43

988.17

1.41

986.76

1.39

985.37

1.36

984.01

1.35

982.66

1.33

981.33

1.32

980.01

1.31

978.70

1.29

0.33

0.34

0.34

0.34

0.35

0.35

0.35

0.35

0.36

0.36

0.36

0.37

37

993.75

1.54

992.21

1.49

990.72

1.46

989.26

1.44

987.82

1.41

986.41

1.39

985.02

1.37

983.65

1.35

982.30

1.33

980.97

1.32

979.65

1.32

978.33

1.30

0.34

0.34

0.35

0.36

0.36

0.36

0.36

0.36

0.37

0.38

0.38

0.38

38

993.41

1.54

991.87

1.50

990.37

1.47

988.90

1.44

87.46

1.41

986.05

1.39

984.66

1.37

983.29

1.36

981.93

1.34

980.59

1.32

979.27

1.32

977.95

1.31

0.35

0.35

0.36

0.36

0.36

0.37

0.37

0.37

0.37

0.38

0.38

0.39

39

993.06

1.54

991.52

1.51

990.01

1.47

98854

1.44

987.10

1.41

98568

1.39

984.29

1.37

982.92

1.36

981.56

1.34

980.22

1.33

978.89

1.33

977.56

1.31

0.35

0.36

0.36

0.37

0.38

0.38

0.38

0.38

0.38

0.39

0.39

0.39

40

992.71

1.55

991.16

1.51

989.65

1.48

988.17

1.45

986.72

1.42

985.30

1.39

983.91

1.37

982.54

1.36

981.18

1.35

979.83

1.33

978.50

1.33

977.17

1.32

TABLE III (continued) International alcoholic strength in 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength in %

10

11

12

13

14

15

16

17

18

19

20

21

0

986.63

1.00

985.63

0.96

984.67

0.92

983.75

0.87

982.88

0.84

982.04

0.81

981.23

0.77

980.46

0.75

979.71

0.73

978.98

0.72

978.26

0.70

977.56

0.70

-0.03

-0.02

-0.01

0.00

0.02

0.04

0.05

0.07

0.09

0.11

0.13

0.15

1

986.66

1.01

985.65

0.97

984.68

0.93

983.75

0.89

982.86

0.86

982.00

0.82

981.18

0.79

98039

0.77

979.62

0.75

978.87

0.74

978.13

0.72

977.41

0.72

-0.02

-0.01

0.00

0.01

0.03

0.04

0.06

0.08

0.10

0.12

0.14

0.17

2

986.68

1.02

985.66

0.98

984.68

0.94

983.74

0.91

982.83

0.87

981.96

0.84

981.12

0.81

980.3l

0.79

979.52

0.77

978.75

0.76

977.99

0.75

977.24

0.74

0.00

0.01

0.02

0.04

0.05

0.06

0.08

0.10

0.12

0.14

0.16

0.18

3

986.68

1.03

985.65

0.99

984.66

0.96

983.70

0.92

982.78

0.88

981.90

0.86

981.04

0.83

980.21

0.81

979.40

0.79

978.61

0.78

977.83

0.77

977.06

0.76

0.01

0.02

0.03

0.04

0.05

0.07

0.08

0.10

0.12

0.14

0.16

0.18

4

986.67

1.04

985.63

1.00

984.63

0.97

983.66

0.93

982.73

0.90

981.83

0.87

980.96

0.85

980.11

0.83

979.28

0.81

978.47

0.80

977.67

0.79

976.88

0.79

0.02

0.03

0.05

0.06

0.08

0.09

0.11

0.13

0.14

0.16

0.18

0.20

5

986.65

1.05

985.60

1.02

984.58

0.98

983.60

0.95

982.65

0.91

981.74

0.89

980.85

0.87

979.98

0.84

979.11

0.83

978.31

0.82

977.49

0.81

976.68

0.81

0.04

0.06

0.06

0.07

0.08

0.10

0.11

0.13

0.15

0.17

0.19

0.21

6

986.61

1.07

985.54

1.02

984.52

0.99

983.53

0.96

982.57

0.93

981.64

0.90

980.74

0.89

979.85

0.86

978.99

0.85

978.14

0.84

977.30

0.83

976.47

0.83

0.05

0.06

0.08

0.09

0.10

0.12

0.14

0.15

0.17

0.19

0.20

0.22

7

986.56

1.08

985.48

1.04

994.44

1.00

983.44

0.97

982.47

0.95

981.52

0.92

980.60

0.90

979.70

0.88

978.82

0.87

977.95

0.85

977.10

0.85

976.25

0.85

0.07

0.08

0.09

0.10

0.11

0.12

0.14

0.16

0.18

0.19

0.21

0.23

8

986.49

1.09

985.40

1.05

984.35

1.01

983.34

0.98

982.36

0.96

981.40

0.94

980.46

0.92

979.54

0.90

978.64

0.88

977.76

0.87

976.89

0.87

976.02

0.97

0.08

0.08

0.09

0.1l

0.13

0.14

0.15

0.16

0.18

0.20

0.22

0.24

9

986.41

1.09

985.32

1.06

984.26

1.03

983.23

1.00

982.23

0.97

981.26

0.95

980.31

0.93

979.38

0.92

978.48

0.90

977.56

0.89

976.67

0.89

975.78

0.89

0.10

0.11

0.12

0.13

0.14

0.16

0.17

0.18

0.19

0.21

0.23

0.25

10

986.31

1.10

985.21

1.07

984.14

1.04

983.10

1.01

982.09

0.99

981.10

0.96

980.14

0.94

979.20

0.93

918.27

0.92

977.35

0.91

976.44

0.91

975.53

0.91

0.10

0.11

0.12

0.13

0.15

0.16

0.17

0.19

0.21

0.23

0.25

0.27

11

986.21

1.11

985.10

1.08

984.02

1.05

982.97

1.03

981.94

1.00

980.94

0.97

979.97

0.96

979.01

0.95

978.06

0.94

977.12

0.93

976.19

0.93

975.26

0.92

0.12

0.13

0.14

0.15

0.16

0.17

0.19

0.21

0.22

0.24

0.26

0.27

12

986.09

1.12

984.97

1.09

983.88

1.06

982.82

1.04

981.78

1.01

980.77

0.99

979.78

0.98

978.80

0.96

977.84

0.96

976.88

0.95

975.93

0.94

974.99

0.94

0.13

0.14

0.15

0.16

0.17

0.19

0.20

0.21

0.23

0.24

0.26

0.28

13

985.96

1.13

984.83

1.10

983.73

1.07

982.66

1.05

981.61

1.03

980.58

1.00

979.58

0.99

978.59

0.98

977.61

0.97

976.64

0.97

975.67

0.96

974.71

0.96

0.15

0.16

0.17

0.18

0.19

0.20

0.22

0.23

0.24

0.26

0.27

0.29

14

985.81

1.14

984.67

1.11

983.56

1.08

982.48

1.06

981.42

1.04

980.38

1.02

979.36

1.00

978.36

0.99

977.37

0.99

976.38

0.98

975.40

0.98

974.42

0.98

0.15

0.16

0.17

0.18

0.19

0.20

0.22

0.24

0.26

0.27

0.28

0.30

15

985.66

1.15

984.51

1.12

983.39

1.09

982.30

1.07

981.23

1.05

980.18

1.04

979.14

1.02

978.12

1.01

977.11

1.00

976.11

0.99

975.12

1.00

974.12

1.00

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.25

0.26

0.28

0.30

0.31

16

985.49

1.16

984.33

1.13

983.20

1.10

982.10

1.08

981.02

1.06

979.96

1.05

978.91

1.04

977.87

1.02

976.85

1.02

975.83

1.01

974.82

1.01

973.81

1.02

0.17

0.18

0.19

0.20

0.21

0.23

0.24

0.25

0.27

0.29

0.30

0.31

17

985.32

1.17

984.15

1.14

98.301

1.11

981.90

1.09

980.81

1.08

979.73

1.06

978.67

1.05

977.62

1.04

976.58

1.04

975.54

1.02

974.52

1.02

973.95

1.04

0.19

0.19

0.20

0.22

0.24

0.25

0.26

0.27

0.28

0.29

0.31

0.33

18

985.13

1.17

983.96

1.15

982.81

1.13

981.68

1.11

980.57

1.09

979.48

1.07

978.41

1.06

977.35

1.05

976.30

1.05

975.25

1.04

974.21

1.04

973.17

1.05

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.29

0.30

0.32

0.34

19

984.93

1.18

983.75

1.16

982.59

1.14

981.45

1.12

980.33

1.10

979.23

1.08

978 15

107

977.08

1.07

976.01

1.06

974.94

1.05

973.89

1.06

972.83

1.06

0.22

0.23

0.24

0.24

0.25

0.26

0.28

0.29

0.30

0.31

0.33

0.35

20

984.71

1.19

983.52

1.17

982.35

1.14

981.21

1.13

980.08

1.11

978.97

1.10

977.87

1.08

976.79

1.08

975.71

1.08

974.63

1.07

973.56

1.08

972.48

1.08

TABLE III (continued) International alcoholic strength in 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength in %

to

10

11

12

13

14

15

16

17

18

19

20

21

20

984.71

1.19

983.52

1.17

982.35

1.14

981.21

1.13

980.08

1.11

978.97

1.10

977.87

1.08

976.79

1.08

975.71

1.08

974.63

1.07

973.56

1.08

972.48

1.08

0.23

0.23

0.23

0.25

 0.26

0.28

0.29

0.31

0.32

0.33

0.35

0.36

21

984.48

1.19

983.29

1.17

982.12

1.16

980.96

1.14

979.82

1.13

978.69

1.11

97758

1.10

976.48

1.09

975.39

1.09

974.30

1.09

973.21

1.09

972.12

1.09

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.31

0.32

0.33

0.35

0.36

22

984.25

1.20

983.05

1.18

981.97

1.17

980.70

1.15

979.55

1.14

978.41

1.12

977.29

1.12

976.17

1.10

975.07

1.10

973.97

1.10

972.86

1.10

971.76

1.11

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.33

0.34

0.35

0.37

23

984.01

1.21

982.80

1.19

981.61

1.18

980.43

1.16

979.27

1.15

978.12

1.13

976.99

1.13

975.86

1.12

974.74

1.11

973.63

1.12

972.51

1.12

971.39

1.13

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.35

0.36

0.38

24

983.76

1.22

982.54

1.20

981.34

1.19

980.15

1.17

978.98

1.16

977.82

1.14

976.68

1.14

97554

1.13

974.41

1.13

97328

1.13

972.15

1.14

971.01

1.14

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.35

0.36

0.38

0.39

25

983.50

1.23

982.27

1.21

981.06

1.20

979.86

1.18

978.68

1.17

977.51

1.16

976.36

1.15

975.21

1.15

974.06

1.14

972.92

1.15

971.77

1.15

970.62

1.15

0.27

0.28

0.29

0.29

0.30

0.31

0.33

0.34

0.35

0.37

0.38

0.39

26

983.23

1.24

981.99

1.22

980.77

1.20

979.57

1.19

978.38

1.18

977.20

1.17

976.03

1.16

974.87

1.16

973.71

1.16

972.55

1.16

971.39

1.16

970.23

1.17

0.29

0.29

0.30

0.31

0.32

0.33

0.34

0.36

0.37

0.38

0.39

0.41

27

982.94

1.24

981.70

1.23

980.47

1.21

979.26

1.20

978.06

1.19

976.87

1.18

975.69

1.18

974.51

1.17

973.34

1.17

972.17

1.17

971.00

1.18

969.82

1.18

0.29

0.30

0.30

0.31

0.32

0.33

0.35

0.36

0.38

0.39

0.40

0.41

28

982.65

1.25

981.40

1.23

980.17

1.22

978.95

1.21

977.74

1.20

976.54

1.20

975.34

1.19

974.15

1.19

972.96

1.18

971.78

1.18

970.60

1.19

969.41

1.20

0.30

0.31

0.32

033

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.42

29

982.35

1.26

981.09

1.24

979.85

1.23

978.62

1.22

977.40

1.21

976.19

1.21

974.98

1.20

973.78

1.20

972.58

1.19

971.39

1.19

970.20

1.21

968.99

1.21

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.38

0.40

0.42

0.43

30

982.04

1.27

980.77

1.25

979.52

1.24

978.28

1.23

977.05

1.22

975.83

1.21

974.62

1.21

973.41

1.21

972.20

1.21

970.99

1.21

969.78

1.22

968.56

1.23

0.32

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.42

0.43

31

981.72

1.27

980.45

1.26.

979.19

1.25

977.94

1.24

976.70

1.23

975.47

1.22

974.25

1.22

973.03

1.22

971.81

1.22

970.59

1.23

969.36

1.23

968.13

1.24

0.33

0.34

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.42

0.43

0.45

32

981.39

1.28

980.11

1.26

978.95

1.26

977.59

1.25

976.34

1.24

975.10

1.23

973.87

1.23

972.64

1.23

971.41

1.24

970.17

1.24

968.93

1.25

967.68

1.26

0.34

0.34

0.35

0.35

0.36

0.37

0.39

0.40

0.41

0.42

0.43

0.45

33

981.05

1.28

979.77

1.27

978.50

1.26

977.24

1.26

975.78

1.25

974.73

1.25

973.48

1.24

972.24

1.24

971.00

1.25

969.75

1.25

968.50

1.27

967.23

1.27

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.45

0.45

34

98071

1.29

979.42

1.28

978.14

1.27

976.97

1.27

975. 60

1.26

974.34

1.26

973.08

1.25

971.83

1.25

970.58

1.26

969.32

1.27

968.05

1.27

966.78

1.29

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.43

0.44

0.45

0.47

35

980.37

1.30

979.07

1.29

977.78

1.28

976.50

1.28

975.22

1.27

973.95

1.27

972.68

1.26

971.42

1.27

970.15

1.27

968.88

1.28

967.60

1.29

966.31

1.30

0.36

0.37

0.37

0.38

0.38

0.39

0.40

0.42

0.43

0.44

0.45

0.47

36

980.01

1.31

978.70

1.29

977.41

1.29

976.12

1.28

974.84

1.28

973.56

1.28

972.28

1.28

971.00

1.28

969.72

1.28

968.44

1.29

967.15

1.31

965.84

1.31

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

37

979.65

1.32

978.33

1.30

977.03

1.30

975.73

1.29

974.44

1.29

973.15

1.29

971.86

1.29

970.57

1.29

969.28

1.29

967.99

1.30

966.69

1.32

965.37

1.32

0.38

0.38

0.39

0.39

0.40

0.41

0.42

0.43

0.44

0.46

0.47

0.48

38

979.27

1.32

977.95

1.31

976.64

1.30

975.34

1.30

974.04

1.30

972.74

1.30

971.44

1.30

970.14

1.30

968.84

1.31

967.53

1.31

966.22

1.33

964.89

1.34

0.38

0.39

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.48

0.49

39

978.89

1.33

977.56

1.31

976.25

1.31

974.94

1.31

973.63

1.31

972.32

1.31

971.01

1.31

969.70

1.31

968.39

1.32

967.07

1.33

965.74

1.34

964.40

1.36

0.39

0.39

0.40

0.41

0.42

0.42

0.43

0.45

0.47

0.48

0.49

0.50

40

978.50

1.33

977.17

1.32

975.85

1.32

974.53

1.32

973.21

1.31

971.90

1.32

970.58

1.33

969.25

1.33

967.92

1.33

966.59

1.34

565.25

1.35

963.90

1.37

TABLE III (continued) International alcoholic strength in 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength in %

to

20

21

22

23

24

25

26

27

28

29

30

31

0

978.26

0.70

977.56

0.70

976.86

0.69

976.17

0.70

975.47

0.72

974.75

0.72

974.03

0.74

973.29

0.77

972.52

0.80

971.72

0.83

970.89

0.87

970.02

0.90

0.13

0.15

0.17

0.20

0.22

0.24

0.27

0.30

0.32

0.35

0.37

0.39

1

978.13

0.72

977.41

0.72

976.69

0.72

975.97

0.72

975.25

0.74

974.51

0.75

973.76

0.77

972.99

0.79

972.20

0.83

971.37

0.85

970.52

0.89

969.63

0.93

0.14

0.17

0.19

0.21

0.24

0.26

0.29

0.31

0.34

0.36

0.38

0.41

2

977.99

0.75

977.24

0.74

976.50

0.74

975.76

0.75

975.01

0.76

974.25

0.78

973.47

0.79

972.68

0.82

971.86

0.85

971.01

0.87

970.14

0.92

960.22

0.96

0.16

0.18

0.20

0.23

0.25

0.27

0.29

0.32

0.34

0.36

0.38

0.40

3

977.83

0.77

977.06

0.76

976.30

0.77

975.53

0.77

974.76

0.78

973.98

0.80

973.18

0.82

972.36

0.84

971.52

0.87

970.65

0.89

969.76

0.94

968.82

0.98

0.16

0.18

0.21

0.23

0.25

0.28

0.30

0.32

0.34

0.36

039

0.42

4

977.67

0.79

976.98

0.79

976.09

0.79

975.30

0.79

974.51

0.81

973.70

0.82

972.88

0.84

972.04

0.86

971.18

0.89

970.29

0.92

969.37

0.96

968.40

1.00

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.33

0.35

0.38

0.40

0.41

5

977.49

0.81

976.68

0.81

975.87

0.81

975.06

0.81

974.25

0.83

973.42

0.84

972.58

0.86

971.71

0.88

970.83

0.92

969.91

0.94

968.97

0.98

967.99

1.02

0.19

0.21

0.23

0.25

0.27

0.30

0.33

0.34

0.37

0.39

0.41

0.43

6

977.30

0.83

976.47

0.83

975.64

0.83

974.81

0.84

973.97

0.85

973.12

0.87

972.25

0.88

971.37

0.91

970.46

0.94

969.52

0.96

968.56

1.00

967.56

1.04

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.35

0.37

0.39

0.41

0.43

7

976.10

0.85

976.25

0.85

975.40

0.85

974.55

0.96

973.69

0.87

972.82

0.89

971.93

0.91

971.02

0.93

970.09

0.96

969.13

0.98

968.15

1.02

967.13

1.06

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.42

0.44

8

976.89

0.87

976.02

0.87

975.15

0.87

974.28

0.88

973.40

0.89

972.51

0.91

971.60

0.93

970.67

0.95

969.72

0.98

968.74

1.01

967.73

1.04

966.69

1.08

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.39

0.41

0.43

0.45

9

976.67

0.89

975.78

0.89

974.89

0.89

974.00

0.90

973.10

0.91

972.19

0.93

971.26

0.95

970.31

0.98

969.33

1.00

968.33

1.03

967.30

1.06

966.24

1.09

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

10

976.44

0.91

975.53

0.91

974.62

0.91

973.71

0.92

972.79

0.93

971.86

0.95

970.91

0.97

969.94

1.00

968.94

1.02

967.92

1.05

966.87

1.08

965.79

1.11

0.25

0.27

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.45

11

976.11

0.93

975.26

0.92

97434

0.93

973.41

0.94

972.47

0.95

971.52

0.97

970.55

0.99

969.56

1.02

968.54

1.04

967.50

1.07

966.43

1.09

965.34

1.13

0.26

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.40

0.42

0.44

0.46

12

975.93

0.94

974.99

0.94

974.05

0.95

973.10

0.96

972.14

0.97

971.17

0.99

970.18

1.01

969.17

1.03

968.14

1.06

967.08

1.09

965.99

1.11

964.88

1.15

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.39

0.41

0.43

0.45

0.47

13

975.67

0.96

974.71

0.96

973.75

0.97

972.78

0.98

971.80

0.99

970.81

1.01

969.80

1.02

968.78

1.05

967.73

1.08

966.65

1.11

965.54

1.13

964.41

1.17

0.27

0.29

0.31

0.33

0.35

0.37

0.38

0.40

0.42

0.44

0.45

0.47

14

975.40

0.98

974.42

0.98

973.44

0.99

972.45

1.00

971.45

1.01

970.44

1.02

969.42

1.04

968.38

1.07

967.31

1.10

966.21

1.12

965.09

1.15

963.94

1.19

0.28

0.30

0.32

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

15

975.12

1.00

974.12

1.00

973.12

1.00

972.12

1.02

971.10

1.03

970.07

1.04

969.03

1.06

967.97

1.09

966.88

1.12

965.76

1.14

964.62

1.17

963.45

1.20

0.30

0.31

0.33

0.35

0.36

0.38

0.40

0.42

0.44

0.45

0.47

0.49

16

974.82

1.01

973.81

1.02

972.79

1.02

971.77

1.03

970.74

1.05

969.69

1.06

968.63

1.08

967.55

1.11

966.44

1.13

965.31

1.16

964.15

1.19

962.96

1.22

0.30

0.31

0.33

0.35

0.37

0.38

0.40

0.42

0.43

0.45

0.47

0.49

17

974.52

1.02

973.50

1.04

972.46

1.04

971.42

1.05

970.37

1.06

969.31

1.08

968.23

1.10

967.13

1.12

966.01

1.15

964.86

1.18

963.68

1.21

962.47

1.24

0.31

0.33

0.34

0.36

0.38

0.40

0.42

0.43

0.45

0.47

0.48

0.50

18

974.21

1.04

973.17

1.05

972.12

1.06

971.06

1.07

969.99

1.08

968.91

1.10

967. 81

1.11

966.70

1.14

965.56

1.17

964.39

1.19

963.20

1.23

961.97

1.26

0.32

0.34

0.35

0.36

0.38

0.40

0.42

0.44

0.46

0.47

0.49

0.50

19

973.89

1.06

972.83

1.06

971.77

1.07

970.70

1.09

969.61

1.10

968.51

1.11

967.39

1.13

966.26

1.16

965.10

1.18

963.92

1.21

962.71

1.24

961.47

1.28

0.33

0.35

0.37

0.39

0.40

0.41

0.42

0.45

0.46

0.48

0.51

052

20

973.56

1.08

972.48

1.08

971.40

1.09

979.31

1.10

969.21

1.11

968.10

1.13

966.97

1.14

965.81

1.17

964.64

1.20

963.44

1.23

962.21

1.26

960.95

1.29

TABLE III (continued) International alcoholic strength in 20OC

Table of apparent densities of ethanol-water mixtures – Ordinary glass apparatus Densities at toC corrected for air buoyancy

Alcoholic strength at %

20

21

22

23

24

25

26

27

28

29

30

31

20

973.56

1.08

972.48

1.08

971.40

1.09

970.31

1.10

969.21

1.11

968.10

1.13

966.97

1.16

965.81

1.17

964.64

1.20

963.44

1.23

962.21

1.26

960.95

1.29

0.35

0.36

0.37

0.39

0.40

0.42

0.44

0.45

0.47

0.49

0.50

0.52

21

973.21

1.09

972.12

1.09

971.03

1.11

969.92

1.11

968.81

1.13

967.68

1.15

966.53

1.17

965.36

1.19

964.17

1.22

962.95

1.24

961.71

1.28

960.43

1.31

0.35

0.36

0.38

0.39

0.41

0.43

0.44

0.46

0.48

0.49

0.51

0.52

22

972.86

1.10

971.76

1.11

970.65

1.12

969.53

1.13

968.40

1.15

967.25

1.16

966.09

1.19

964.90

1.21

963.69

1.23

962.46

1.26

961.20

1.29

959.91

1.32

0.35

0.37

0.39

0.40

0.42

0.43

0.45

0.46

0.48

0.50

0.52

0.53

23

972.51

1.12

971.39

1.13

970.26

1.13

969.13

1.15

967.98

1.16

966.82

1.18

965.64

1.20

964.44

1.23

963.21

1.25

961.96

1.28

960.68

1.30

959.38

1.33

0.36

0.38

0.39

0.41

0.42

0.44

0.46

0.48

0.49

0.51

0.53

0.54

24

972.15

1.14

971.01

1.14

969.87

1.15

968.72

1.16

967.56

1.18

966.38

1.20

965.18

1.22

963.96

1.24

962.72

1.27

961 45

1.29

960.16

1.32

958.84

1.34

0.38

0.39

0.40

0.42

0.44

0.45

0.46

0.48

0.50

0.51

0.53

0.54

25

971.77

1.15

970.62

1.15

969.47

1.17

968.30

1. 18

96 7.12

1.19

965.93

1.21

964.72

1.24

963.48

1.26

962.22

1.28

960.94

1.31

959.63

1.33

958.30

1.36

0.38

0.39

0.41

0.42

0.44

0.46

0.48

0.49

0.50

0.52

0.53

0.55

26

971.39

1.16

970.23

1.17

969.06

1.18

967.88

1.20

966.68

1.21

965.47

1.23

964.24

1.25

962.99

1.27

961.72

1.30

960.42

1.32

959.10

1.35

957.75

1.38

0.39

0.41

0.42

0.44

0.45

0.46

0.48

0.50

0.51

0.52

0.53

0.55

27

971.00

1.18

969.82

1.18

968.64

1.20

967.44

1.21

966.23

1.22

965.01

1.25

963.76

1.27

962.49

1.28

961.21

1.31

959.90

1.33

958.57

1.37

957.20

1.40

0.40

0.41

0.43

0.44

0.46

0.48

0.49

0.50

0.52

0.53

0.55

0.56

28

970.60

1.19

969.41

1.20

968.21

1.21

967.00

1.23

965.77

1.24

964.53

1.26

963.27

1.28

961.99

1.30

960.69

1.32

959.37

1.35

958.02

1.38

956.64

1.41

0.40

0.42

0.43

0.45

0.46

0.48

0.49

0.50

0.52

0.54

0.55

0.56

29

970.20

1.21

968.99

1.21

96778

1.23

966.55

1.24

965.31

1.26

964.05

1.27

962.78

1.29

961.49

1.32

960.17

1.34

958.83

1.36

957.47

1.39

956.08

1.43

0.42

0.43

0.45

0.46

0.47

0.48

0.50

0.52

0.53

0.54

0.56

0.58

30

969.78

1.22

968.56

1.23

967.33

1.24

966.09

1.25

964.84

1.27

963.57

1.29

962.28

1.31

960.97

1.33

959.64

1.35

958.29

1.38

956.91

1.41

955.50

1.44

0.42

0.43

0.44

0.45

0.47

0.49

0.51

0.52

0.53

0.55

0.56

0.58

31

969.36

1.23

968.13

1.24

966.89

1.25

965.64

1.27

964.37

1.29

963.08

1.31

961.77

1.32

960.45

1.34

959.11

1.37

957.74

1.39

956.35

1.43

954.92

1.45

0.43

0.45

0.46

0.48

0.49

0.50

0.51

0.52

0.54

0.56

0.57

0.58

32

968.93

1.25

967.68

1.25

966.43

1.27

965.16

1.28

963.88

1.30

962.58

1.32

961.26

1.33

959.93

1.36

958.57

1.39

957.18

1.40

955.78

1.44

954.34

1.47

0.43

0.45

0.47

0.48

0.50

0.51

0.52

0.54

0.55

0.56

0.58

0.59

33

968.50

1.27

967.23

1.27

965.96

1.28

964.68

1.30

963.38

1.31

962.07

1.33

960.74

1.35

959.39

1.37

958.02

1.40

956.62

1.42

955.20

1.45

953.75

1.48

0.45

0.45

0.47

0.49

0.50

0.51

0.52

0.54

0.55

0.56

0.58

0.60

34

968.05

1.27

966.78

1.29

965.49

1.30

964 19

1.31

962.88

1.32

961.56

1.34

960.22

1.37

958.85

1.38

957.47

1.41

956.06

1.44

954.62

1.47

953.15

1.49

0.45

0.47

0.48

0.49

0.50

0.52

0.54

0.55

0.57

0.58

0.59

0.60

35

967.60

1.29

996.31

1.30

965.01

1.31

963.70

1.32

962.38

1.34

961.04

1.36

959.68

1.38

958. 0

1.40

956.90

1.42

955.48

1.45

954.03

1.48

952.55

1.50

0.45

0.47

0.48

0.49

0.51

0.53

0.54

0.57

0.59

0.60

061

36

967.15

1.31

965.84

1.31

964.53

1.32

963.21

1.34

961.87

1.36

960.51

1.37

959.14

1.39

957.75

1.42

956.33

1.44

954.89

1.46

953.43

1.49

951.94

1.51

0.46

0.47

0.48

0.50

0.52

0.53

0.55

0.56

0.57

0.58

0.60

0.61

37

966.69

1.32

965.37

1.32

964.05

1.34

962.71

1.36

961.35

1.37

959.98

1.39

958.59

1.40

957.19

1.43

955.76

1.45

954.31

1.48

952.83

1.50

951.33

1.52

0.47

0.48

0.50

0.51

0.52

0.54

0.55

0.57

0.58

0.59

0.60

0.61

38

966.22

1.33

964.89

1.34

963.55

1.35

962.20

1.37

960.83

1.39

959.44

1.40

958.04

1.42

956.62

1.44

955.18

1.46

953.72

1.49

952.23

1.51

950.72

1.54

0.48

0.49

0.51

0.52

0.53

0.54

0.56

0.57

0.58

0.60

0.61

0.62

39

965.74

1.34

964.40

1.36

963.04

1.36

961.68

1.38

960.30

1.40

958.90

1.42

957.48

1.43

956.05

1.45

954.60

1.48

953 12

1.50

951.62

1.52

950.10

1.55

0.49

0.50

0.51

0.53

0.54

055

0.56

058

0.60

0.61

0.62

0.64

40

965.25

1.35

963.90

1.37

962.53

1.38

961.15

1.39

959.76

1.41

958.35

1.43

956.92

1.45

955.47

1.47

954.00

1.49

952.51

1.51

951.00

1.54

949.49

1.56

TABLE IV

Table giving the refractive indices of pure ethanol-water mixtures

and distillates at 20oC

and the corresponding alcoholic strengths at 20oC

 

Refractive

index

at 20oC

Alcoholic strength at 20oC

Refractive

index

at 20oC

Alcoholic strength at 20oC

Water-ethanol

mixtures

Distillates

Water-ethanol

mixtures

Distillates

1.33628

6.54

0.25

6.48

0.26

1.34222

16.76

0.23

16.65

0.23

1.33642

6.79

0.26

6.74

0.26

1.34236

16.99

0.23

16.88

0.24

1.33656

7.05

0.25

7.00

0.27

1.34250

17.22

0.22

17.12

0.22

1.33670

7.30

0.28

7.27

0.27

1.34264

17.44

0.24

17.34

0.22

1.33685

7.58

0.25

7.54

0.25

1.34278

17.68

0.21

17.56

0.22

1.33699

7.83

0.26

7.79

0.26

1.34291

17.89

0.23

17.78

0.23

1.33713

8.09

0.25

8.05

0.25

1.34305

18.12

0.24

18.01

0.22

1.33727

8.34

0.28

8.30

0.26

1.34319

18.36

0.23

18.23

0.23

1.33742

8.62

0.25

8.56

0.25

1.34333

18.59

0.23

18.46

0.24

1.33756

8.87

0.25

8.81

0.25

1.34347

18.82

0.23

18.70

0.22

1.33770

9.12

0.24

9.06

0.24

1.34361

19.05

0.23

18.92

0.25

1.33784

9.36

0.27

9.30

0.25

1.34375

19.28

0.23

19.17

0.23

1.33799

9.63

0.24

9.55

0.26

1.34389

19.51

0.24

19.40

0.22

1.33813

9.87

0.25

9.81

0.24

1.34403

19.75

0.23

19.62

0.24

1.33827

10.12

0.23

10.05

0.24

1.34417

19.98

0.24

19.86

0.23

1.33841

10.35

0.26

10.29

0.25

1.34431

20.22

0.22

20.09

0.24

1.33856

10.61

0.25

10.54

0.24

1.34445

20.44

0.21

20.33

0.21

1.33870

10.86

0.24

10.78

0.24

1.34458

20.65

0.24

20.54

0.22

1.33884

11.10

0.23

11.02

0.24

1.34472

20.89

0.22

20.76

0.23

1.33898

11.33

0.24

11.26

0.24

1.34486

21.11

0.23

20.99

0.22

1.33912

11.47

0.24

11.50

0.24

1.34500

21.34

0.21

21.21

0.23

1.33926

11.81

0.24

11.74

0.24

1.34513

21.55

0.23

21.44

0.21

1.33940

12.05

0.25

11.98

0.24

1.34527

21.78

0.22

21.65

0.22

1.33955

12.30

0.23

12.22

0.24

1.34541

22.00

0.23

21.87

0.23

1.33969

12.53

0.23

12.46

0.23

1.34555

22.23

0.21

22.10

0.21

1.33983

12.76

0.24

12.69

0.23

1.34568

22.44

0.23

22.31

0.23

1.33997

13.00

0.23

12.92

0.23

1.34582

22.67

0.23

22.54

0.21

1.34011

13.23

0.24

13.15

0.25

1.34596

22.90

0.23

22.75

0.21

1.34025

13.47

0.23

13.40

0.22

1.34610

23.13

0.20

22.96

0.21

1.34039

13.70

0.23

13.62

0.24

1.34623

23.33

0.24

23.17

0.23

1.34053

13.93

0.23

13.86

0.23

1.34637

23.57

0.24

23.40

0.21

1.34067

14.16

0.25

14.09

0.23

1.34651

23.81

0.23

23.61

0.24

1.34081

14.41

0.25

14.32

0.25

1.34665

24.04

0.22

23.85

0.24

1.34096

14.66

0.23

14.57

0.24

1.34678

24.26

0.22

24.09

0.22

1.34110

14.89

0.24

14.81

0.25

1.34692

24.48

0.24

24.31

0.25

1.34124

15.13

0.23

15.06

0.22

1.34706

24.72

0.23

24.56

0.22

1.34138

15.36

0.23

15.28

0.22

1.34720

24.95

0.21

24.78

0.22

1.34152

15.59

0.24

15.50

0.24

1.34733

25.16

0.24

25.00

0.23

1.34166

15.83

0.23

15.74

0.22

1.34747

25.40

0.22

25.23

0.22

1.34180

16.06

0.23

15.96

0.23

1.34760

25.62

0.24

25.45

0.25

1.34194

16.29

0.23

16.19

0.22

1.34774

25.86

0.24

25.70

0.23

1.34208

16.52

0.24

16.41

0.24

1.34788

26.10

0.22

25.93

0.22

Methanol (GC) (Type-IV)

OIV-MA-AS312-03A Methanol

Type II method

 

  1. Scope of application

This method is applicable to the determination of methanol in wine for concentrations between 50 and 500 mg/L.

  1. Principle

Methanol is determined in the distillate, to which an internal standard is added, using gas chromatography with a flame ionisation detector (FID).

  1. Reagents and materials

 

3.1.  Type II water, according to ISO standard 3696

3.2.  Ethanol: purity 96 % (CAS no. 64-17-5)

3.3.  Hydrogen: minimum specifications: 99.999% purity (CAS no. 1333-74-0)

3.4.  Helium: minimum specifications: 99.999% purity (CAS no. 7440-59-7)

3.5.  Methanol: purity ≥ 99 % (CAS no. 67-56-1)

3.6.  4-Methyl-2-pentanol (internal standard): purity 98 % (CAS no. 108-11-2). Internal standard used in the validation.

Note 1: Other internal standards can be used, such as:

3-pentanol: purity 98% (CAS no. 584-02-1)

4-methyl-1-pentanol: purity 98% (CAS no. 626-89-1)

Methyl nonanoate: purity 98% (CAS no. 1731-84-6)

3.7.  Reference materials: these may be, for example, wines from laboratory proficiency tests.

3.8.  Preparation of working solutions (by way of example):

3.8.1.      Approximately 10% v/v aqueous-alcoholic mixture

 This mixture should be as close as possible to the alcohol content of the wine to be analysed. Pour 100 mL of ethanol (3.2) into a 1 L calibrated flask (4.2), make up to volume with demineralised water (3.1) and mix.

3.8.2.      10 g/L Internal standard solution

Using an analytical balance (4.1), weigh approximately 1 g of internal standard (3.6) into a 100 mL calibrated flask (4.3) that contains around 60 mL of 10% ethanol solution (3.8.1), so as to minimise evaporation of the internal standard. Make up to volume with the ethanol solution (3.8.1) and mix.

3.8.3.      1 g/L Internal standard solution

Add 10 mL of the 10 g/L internal standard solution (3.8.2) using a pipette (4.8) and make up to 100 mL (4.3) using the 10% v/v hydroalcoholic mixture (3.8.1).

3.8.4.      5 g/L Methanol stock solution

Using an analytical balance (4.1), weigh approximately 500 mg of methanol (3.5) into a 100 mL calibrated flask (4.3) that contains about 60 mL of 10% ethanol solution (3.8.1), so as to minimise evaporation of the methanol. Make up to volume with the ethanol solution (3.8.1) and mix.

3.8.5.      Working calibration solutions

By way of example, a method for plotting a calibration curve is outlined below.

Each solution should be prepared with the 10% aqueous-alcoholic mixture (3.8.1).

3.8.5.1.                        500 mg/L Methanol standard solution

Add 10 mL of the 5 g/L stock solution (3.8.4) to a 100 mL calibrated flask (4.3) using a pipette (4.8) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.1.                 250 mg/L Methanol standard solution

Add 10 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.8) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.2.                 200 mg/L Methanol standard solution

Add 20 mL of the 500 mg/L methanol solution (3.8.5.1) to a 50 mL calibrated flask (4.4) using a pipette (4.7) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.3.                 150 mg/L Methanol standard solution

Add 6 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.9) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.4.                 100 mg/L Methanol standard solution

Add 4 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.10) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.5.                 50 mg/L Methanol standard solution

Add 2 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.11) and make up to volume with the 10% v/v ethanol solution (3.8.1).

  1. Apparatus

 

4.1.  Analytical balance (1 mg precision)

4.2.  1 L Class A calibrated flasks

4.3.  100 mL Class A calibrated flasks

4.4.  50 mL Class A calibrated flasks

4.5.  20 mL Class A calibrated flasks

4.6.  10 mL Class A calibrated flasks

4.7.  20 mL Class A pipettes with two marks

4.8.  10 mL Class A pipettes with two marks

4.9.  6 mL Class A pipettes with two marks

4.10.        4 mL Class A pipettes with two marks

4.11.        2 mL Class A pipettes with two marks

4.12.        1 mL Class A pipettes with two marks or 1 mL micropipettes

4.13.        Temperature-programmable gas chromatograph with a flame ionisation detector and a data processing system capable of calculating areas or measuring peak heights

4.14.        Fused silica capillary column coated with a Carbowax 20M-type polar stationary phase (for example):

  • Chrompack CP-wax 57 CB, 50 m x 0.32 mm x 0.45 µm
  • DB-WAX 52, 30 m x 25 mm x 0.2 m

 

  1. Sample preparation

 

Sparkling and/or young wines must be pre-degassed, for example, by mixing 200 mL of wine in a 1 L flask. Subsequently, the samples are distilled according to the method for determining alcoholic strength by volume (OIV-MA-AS312-01). The distillation can be carried out without adding calcium hydroxide in this case.

5.1.  Addition of internal standard (by way of example)

Pour 10 mL of distillate into a 10 mL calibrated flask (4.6), add 1 mL (4.12) of internal standard solution (3.8.3) and mix.

  1. Procedure

 

The calibration curve standards are treated in the same way as the samples (point 5.1).

It is recommended that the aqueous-alcoholic mixture (3.8.1) is injected at the start of the sequence in order to verify that it does not contain methanol.

6.1.  Operating conditions (as a guide):

Carrier gas: helium or hydrogen

Carrier gas flow: 7 mL/min

Injection: split (ratio: 7:50)

Injection volume: 1 or 2 μL

Injector temperature: 200-260 ºC

Detector temperature: 220-300 ºC

Temperature programme: from 35 ºC (for 2 minutes) to 170 ºC, at 7.5 ºC/min

  1. Calculations

 

Calculate the concentration of methanol (Ci), using the following equation:

– Peak area of methanol

– Peak area of internal standard

– Concentration of internal standard

m - Slope of the calibration curve

b - Y-intercept of the calibration curve

  1. Expression of the results

The concentration of methanol may be expressed in mg/L or in mg/100 mL absolute alcohol; in the latter case, the alcohol content by volume of the wine should be determined.

 

Note 2: mg/100 mL absolute alcohol = mg/L x 10/alcohol content by volume

  1. Precision

The data from the international interlaboratory test is outlined in Annex A.

  1. Quality control

Internal quality control may be carried out using certified reference materials or wines whose characteristics have been determined from a consensus (3.7). These should be prepared as for the samples (point 5). Participation in proficiency tests is recommended.

  1. Report of the results

The results are expressed to the nearest whole number (in accordance with the uncertainty).

  1. Bibliography

 

Compendium of international methods of wine and must analysis. Method OIV-MA-AS312-01 (Alcoholic strength).

Annex A Statistical results of the interlaboratory test

Design of validation study

The validation study was conducted with 10 samples: 2 white wines, one dry and one sweet, 2 red wines, one of which was oaked, and 1 fortified wine (Port), including blind duplicates, according to OIV recommendations. The approximate concentration of methanol is shown in the following table.

Sample

White wine

Dry

White wine

Sweet

Red wine

Red wine

oaked

Fortified wine

port

Methanol (mg/L)

50

150*

270

400*

120

(*) In this particular indicated case, methanol was added to the wine to cover a greater range of concentrations. The wine was then mixed, stabilised and bottled.

Participating laboratories:

Samples were sent to 17 laboratories in 9 different countries.

Laboratorios Agroalimentarios, Madrid (Spain)

Estación de Viticultura y Enología de Galicia, EVEGA (Spain)

Estació de Viticultura i Enologia de Vilafranca del Penedès, (Spain)

Estación Enológica de Haro, La Rioja (Spain)

Estación de Viticultura y Enología de Galicia (Spain)

Lab. Bordeaux, Service Commun des Lab., Pessac (France)

Laboratoire d'Ile-de-France, Paris (France)

Laboratoires Inter Rhône (France)

Comité Interprof. du Vin de Champagne (CIVC) (France)

Bfr-Bundesinst. f. Risikobewertung (Germany)

Landesuntersuchungsamt Mainz (Germany)

Instituto Nacional de Vitivinicultura, Mendoza (Argentina)

ALKO Inc., Alcohol Control Lab. (ACL) (Finland)

Instituto dos Vinhos do Douro e do Porto (Portugal)

 

Une image contenant table

Description générée automatiquement

Czech Agriculture and Food Inspection Authority (CAFIA), Brno (Czech Republic) CZ
National Food Safety Office, Directorate of Oenology and Alcoholic Beverages (NÉBIH BAII), Budapest (Hungary)
Lehr- und Forschungszentrum, Klosterneuburg (Austria)

 

Une image contenant table

Description générée automatiquement

According to the Horrat, the repeatability and reproductibility of the method are acceptable

 

Une image contenant table

Description générée automatiquement

Z-scores obtained by the participants of the 85 Z-scores, 3 are unsatisfactory and 4 are questionable

 

Methanol (colorimetry) (Type-IV)

OIV-MA-AS312-03B Methanol

Type IV method

  1. Principle

 

The wine distillate is diluted to an ethanol content of 5% (v/v). Methanol is oxidized to formaldehyde (methanol) by potassium permanganate (acidified by phosphoric acid). The amount of formaldehyde is determined by the violet color formed by the reaction of chromotropic acid in a sulfuric medium.  The intensity of the color is determined by spectrophotometry at 575 nm.

  1. Method

2.1.   Reagents

2.1.1. Chromotropic Acid

4,5Dihydroxy2,7naphthalenedisulfonic acid, (), (MW 356.34 g)

White or light brown powder, soluble in water. The di-sodium salt of this acid that forms a yellow or light brown substance, and is very soluble in water can also be used.

Purification - The chromotropic acid must be pure and give a negligible color in the blank tests of reagents prepared with it.  If this is not the case, proceed with purification using the following procedure:

Dissolve 10 g of chromotropic acid or its salt in 25 mL of distilled water. If the salt has been used, add 2 mL of concentrated sulfuric acid ( = 1.84 g/mL) to release the acid. Add 50 mL of methanol, heat to boiling and filter. Add 100 mL of iso-propanol to precipitate the pure crystals of chromotropic acid, allow the crystals formed to drain and cold dry.

Reaction - The addition of ferric chloride (1 drop) to 10 mL of a 0.1 g/L solution should give a green color.

Sensitivity test - Dilute 0.5 mL of analytical grade formaldehyde to 1 L with water. To 5 mL of 0.05%chromotropic acid solution in sulfuric acid, 75% (v/v), add 0.1 mL of formaldehyde solution and heat to 70°C for 20 min.  A violet color should be produced.

2.1.2. Chromotropic acid solution, 0.05%, in sulfuric acid solution, 75% (v/v).

Dissolve 50 mg chromotropic acid (2.1.1) or its sodium salt in 35 mL of distilled water. Cool this solution with iced water and add carefully 75 mL of concentrated sulfuric acid (ρ= 1.84 g/mL) in small portions, while mixing.

This solution must be prepared just before use.

2.1.3. Methanol, 5 g/L, standard solution in alcohol 5%, (v/v)

Pure methanol ( = 64.7 0.2): 0.5 g

Absolute alcohol (without methanol): 50 mL

Distilled water to: 1 liter

2.1.4. Dilution solution

Absolute alcohol (without methanol): 50 mL

Distilled water to: 1 liter

2.1.5. Phosphoric acid solution, 50% (m/v)

2.1.6. Potassium permanganate solution, 5% (m/v)

2.1.7. Neutral sodium sulfite solution, 2% (m/v)

Solution rapidly oxidizes in air. Determine the exact strength by iodometric titration.

2.2.   Procedure

Dilute the wine distillate (see chapter Alcoholic strength) to reduce the alcoholic strength to 5% vol.

Into a ground-glass stopper test tube place 0.5 mL of the diluted distillate, add 1 drop of phosphoric acid, 50%, 2 drops of potassium permanganate solution, 5%, shake and allow to stand for 10 minutes.

Decolorize the permanganate by adding a few drops, usually 4, of neutralized 2% sodium sulfite solution, (avoid any excess). Add 5 mL 0.05% chromotropic acid.  Place in a water bath at 70°C for 20 min.  Allow to cool.

Determine the absorbance As, at 570 nm, the zero of the absorbance being adjusted on the control sample prepared with 0.5 mL of the dilution solution.

Calibration curve

In a series of 50 mL volumetric spherical flasks, place 2.5, 5, 10, 15, 20, 25 mL respectively of the methanol, 0.5 g/L, solution in ethanol 5%.  Make up to volume with a 5% ethanol solution.  These solutions contain 25, 50, 100, 150, 200 and 250 mg of methanol per liter.

Treat simultaneously 0.5 mL of the dilution solution and 0.5 mL of each of the standard solutions, with the same technique as used to bring the wine distillate to an ethanol concentration of 5%.

Determine the absorbance of these solutions at 570 nm, in the conditions described above.

The graph of absorbance of the standard solutions as a function of concentration should be a straight line.

2.3.   Calculations

Determine the methanol concentration, expressed in mg/L of the wine distillate brought to an alcoholic strength of 5% vol., and plotted as on the calibration line.

Express the concentration in wine in mg/L taking into account the dilution performed to bring the strength to 5% vol.

Glycerol and 2,3- butanediol (Type-IV)

OIV-MA-AS312-04 Glycerol and 2,3-Butanediol

Type IV method

 

  1. Principle

Glycerol and 2,3‑butanediol are oxidized by periodic acid after treatment through an anion exchange resin column to fix the sugars and a large proportion of mannitol and sorbitol. The product obtained by the action of phloroglucinol on formaldehyde (by glycerol oxidation) is determined colorimetrically at 480 nm. The product formed by the action of piperidine solution and sodium nitroferricyanide solution with the ethanol (by oxidation of 2,3‑butanediol) is determined colorimetrically at 570 nm.

 

  1. Apparatus

2.1.   Glass column 300 mm long and approximately 10-11 mm internal diameter fitted with a stopcock.

2.2.   Spectrophotometer allowing measurement to be made between 300 and 700 nm and glass cells with optical path length of 1 cm.

 

  1. Reagents

3.1.   Glycerol,

3.2.   2,3-Butanediol,

3.3.   A strongly basic anion exchange resin e.g. anion exchange resin of Merck strength III or Amberlite IRA 400.

3.4.   Polyvinylpolypyrrolidone (PVPP) (see International Oenological Codex).

3.5.   Periodic acid, 0.1 M, in sulfuric acid, 0.05 M.

Weigh 10.696 g of sodium periodate, NaIO4, place into a 500 mL volumetric flask, dissolve with 50 mL of sulfuric acid, 0.5 M, and make up to 500 mL with distilled water.

3.6.   Periodic acid, 0.05 M, in sulfuric acid, 0.025 M.

The above solution (3.5) is diluted 1 : 1 with distilled water.

3.7.   Sulfuric acid, 0.5 M.

3.8.   Sodium hydroxide solution, 1 M.

3.9.   Sodium hydroxide solution, 5% (m/v).

3.10.         Ethanol, 96% (v/v).

3.11.         Phloroglucinol solution, 2% (m/v), to be prepared fresh daily.

3.12.         Sodium acetate solution, 27% (m/v), prepared from anhydrous sodium acetate, COONa.

3.13.         Sodium nitroferricyanide solution, Na2Fe(CN)5NO.2H2O, 2% (m/v), to be prepared fresh daily

3.14.         Piperidine solution, N 25% (v/v), to be prepared fresh daily.

3.15.         Standard glycerol solution

Prepare a solution containing 250 g glycerol in 100 mL and determine the glycerol content by the enzymatic or periodimetric method (see section 6).

Prepare the standard glycerol solution as follows: weigh in a 100 mL volumetric flask a mass "m" corresponding to 250 mg of pure glycerol, make up to 100 mL with water.

3.16.         Standard 2,3‑butanediol solution

Prepare a solution containing 250 mg of 2,3‑butanediol sample in 100 mL and determine the 2,3-butanediol content by the periodimetric method (see section 6).

Prepare the standard solution of 2,3‑butanediol by weighing in a 100 mL volumetric flask a mass "m" corresponding to 250 mg of pure 2,3‑butanediol; make up to 100 mL with water.

3.17.         Alkaline copper solution:

Copper Solution A

Copper sulfate,: 40 g

Sulfuric acid (r=1.84 g/mL): 2 mL

Make up to 1000 mL with water

Alkaline tartaric solution B

Potassium sodium tartrate tetrahydrate

: 200 g

Sodium hydroxide: 150 g

Make up to 1000 mL with water

The copper alkaline solution is obtained by mixing solution A and B in equal quantities at the time of use.

 

  1. Procedure

 

4.1.   Preparation of an anion exchange column

The anion exchange resin (Cl-) must be kept in a flask filled with decarbonated distilled water.

Put 30 mL of anion exchange resin (3.3) in the column (2.1), place a wool plug on the top of the column to stop air contact with the resin. Pass 150 mL of 5% sodium hydroxide (3.9) through the column at a flow rate of 3.5 to 5 mL per minute followed by a similar quantity of decarbonated distilled water at the same flow rate until the eluent is neutral or slightly alkaline to phenolphthalein.  The resin is then ready for use.

The anion exchange resin can only be used once.  It can be regenerated by treating with 5% hydrochloric acid for a few hours and then rinsed with water until free of chloride.  (Check for absence of chloride).

4.2.   Preparation of sample

The wine sample is diluted 10/50.

In case of strongly colored wines, first decolorize with PVPP (3.4): place 10 mL wine in a 50 mL volumetric flask, dilute with water (20 mL) and add 300 mg of PVPP (3.4).  Leave for 20 min. stirring occasionally, make to the mark and filter through fluted filter paper.  Take 10 mL of diluted wine (treated or untreated with PVPP) and place on the anion exchange column.  Allow to drain, drop by drop, at flow rate not exceeding 2 mL per minute.  When the level of diluted wine reaches 5‑10 mm above the glass wool plug, add decarbonated distilled water to bring the volume of the eluent to 100 mL at a flow rate 2‑3 mL per minute.  The eluate must be free of sugars.  To ensure this, boil rapidly 5 mL of eluate with 5 mL of alkaline copper solution (3.17).  There should not be any discoloration or precipitation.

4.3.   Determination of glycerol

4.3.1. Photometric determination

Place into a 100 mL conical ground necked vessel:

  • 10 mL eluate and add successively
  • 10 mL distilled water and
  • 10 mL periodic acid solution, 0.05 M (3.6).

Stir carefully; leave exactly 5 min. for the oxidation to take place. Add 10 mL sodium hydroxide solution, (3.8), and 5 mL 96% ethanol (v/v) (3.10).

Stir after each addition, then add 10 mL phloroglucinol solution (3.11)

Mix rapidly and transfer the solution into a 1 cm cell.  The purple coloration is obtained very quickly. Its intensity reaches a maximum after 50 to 60 seconds, then decreases. Note the maximal absorbance.  The measurement is carried out at 480 nm using air as a reference.

4.3.2. Preparation of the calibration curve

Pipette into 100 mL volumetric flasks:

3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 mL glycerol standard solution (3.15) and make up to volume with distilled water.

These solutions correspond, according to the conditions in 4.2, to the following concentrations:

3.75, 5.00, 6.25, 7.50, 8.75 and 10.00 g/L of glycerol.

Proceed with the determination as described in 4.3.1, replacing the eluate by the same volume of each of the standard solutions.

4.4.   Determination of 2,3‑butanediol

4.4.1. Photometric determination

Place into a conical 100 mL ground stoppered vessel:

  • 20 mL eluate and add successively
  • 5 mL sodium acetate solution (3.12) and
  • 5 mL 0.1 M periodic acid solution (3.5).

Stir to mix, leave for 2 min exactly for oxidation to take place

Add:

  • 5 mL sodium nitroferricyanide solution (3.13) and
  • 5 mL piperidine solution (3.14).

Transfer the solution into a 1 cm cell.  The purple color is obtained very rapidly; its intensity reaches a maximum after 30‑40 sec then diminishes. Note the maximal absorbance.  The measurement is carried out at 570 nm using air as a reference.

4.4.2. Preparation of the calibration curve

Put 10.0 mL of 2,3-butanediol standard solution (3.16) in a 100 mL volumetric flask and make up with distilled water.  From this solution prepare standard solutions by pipetting respectively into 100 mL volumetric flasks:

2.0, 4.0, 6.0, 8.0 and 10.0 mL, make up with distilled water

These solutions correspond, according to the conditions described in 4.2 to the following concentrations: 0.25, 0.50, 0.74, 1.00 and 1.25 g/L of 2,3-butanediol.

Proceed with the determination as described in 4.4.1, replacing the eluate by the same volume of each of the standard solutions.  The straight line of the calibration graph should pass through the origin.

  1. Calculation and expression of results
    1.    Glycerol
      1. Method of calculation

Read the glycerol content from the calibration curve.  The result is expressed in g/L to one decimal place.

5.1.2. Repeatability

5.1.3. Reproducibility

5.2.   2,3-Butanediol

5.2.1. Method of calculation

Read the 2,3-butanediol content on the calibration.  The result is expressed in g/L to two decimal places.

5.2.2.      Repeatability

5.2.3.      Reproducibility

  1. Glycerol and 2,3-butanediol by periodimetric titration
    1.    Reagents
      1. Sodium hydroxide solution, 1 M.
      2. Sulfuric acid solution, 0.5 M.
      3. Periodic acid solution, 0.025 M.
      4. Sodium bicarbonate solution, NaHCO3, 8% (m/v).
      5. Sodium arsenate solution, 0.025 M.

In a 1000 mL volumetric flask, dissolve 2.473 g of arsenic III oxide, , with 30 mL 1 M sodium hydroxide, (6.1.1) add 35 mL 0.5 M sulfuric acid (6.1.2), and make up to the mark with distilled water.

6.1.6. Iodine solution, 0.025 M.

6.1.7. Potassium iodide, 10% (m/v).

6.1.8. Starch paste, 2% (m/v).

6.2.   Procedure

In a 300 mL conical flask add:

  • 5 mL glycerol sample solution (3.15)
  • 45 mL distilled water

or

  • 25 mL 2,3-butanediol sample solution (3.16)
  • 25 mL distilled water

Add:

  • 20 mL periodic acid, 0.025 M (6.1.3), leave for 15 min, shaking from time to time
  • 10‑20 mL sodium bicarbonate solution (6.1.4)
  • 20 mL sodium arsenate solution (6.1.5)

Leave for 15 min shaking from time to time and add:

  • 5 mL potassium iodide solution (6.1.7)
  • 2 mL starch paste (6.1.8)

Titrate the excess sodium arsenate with 0.025 M iodine solution (6.1.6).

Prepare at the same time a blank test using 50 mL distilled water and the same quantity of reagents.

6.3.   Method of calculation

6.3.1. Glycerol

1 mL periodic acid, 0.025 M, oxidizes 1.151 mg glycerol.

The glycerol content in g/L of the glycerol standard solution (3.15) is:

The percentage of glycerol used in the standard glycerol solution (3.15) is:

  • X = mL of the iodine solution, 0.025 M, used up by the standard solution (3.15)
  • B = mL of the iodine solution, 0.025 M, in the blank test
  • a  = mL of the solution test (3.15) (equal to 5 mL)
    1. 2,3‑Butanediol

1 mL periodic acid, 0.025 M, oxidizes 2.253 mg of 2,3-butanediol.

The 2,3-butanediol content in g/L of the 2,3-butanediol standard solution (3.16) is:

The percentage of 2,3-butanediol used in the 2,3-butanediol standard solution (3.2) is:

  • X' = mL of iodine solution, 0.025 M, used up by the standard solution (3.16)
  • B' = mL of iodine solution, 0.025 M, used in blank test
  • b = mL of the solution test (3.16) (equal to 25 mL)

Bibliography

  • REBELEIN H., Z. Lebensm. Unters. u. Forsch., 1957, 4, 296, F.V., O.I.V., no 63.
  • TERCERO C., SANCHEZ O., F.V., O.I.V., 1977, no 651 et 1981, no 731.

Glycerol (enzymatic method) (Type-IV)

OIV-MA-AS312-05 Glycerol

Type IV method

 

  1. Principle

The glycerokinase (GK) catalyses the phosphorylation of glycerol to glycerol‑3‑phosphate by adenosine‑5'‑triphosphate (ATP) (1):

(1)

The adenosine‑5'‑diphosphate (ADP) is then converted into ATP by phosphoenol-pyruvate (PEP) in presence of pyruvate‑kinase (PK) with pyruvate (2) formation:

(2)

Pyruvate is converted into lactate by reduced nicotinamide‑adenine dinucleotide NADH) in presence of lactate‑dehydrogenase (LDH) (3):

(3)

 The quantity of NAD+ formed during the reaction is proportional to the quantity of glycerol.  The NADH oxidization is measured by the decrease of its extinction at wavelengths of 334 nm, 340 nm or 365 nm.

 

  1. Apparatus

2.1.   Spectrophotometer enabling measurements to be made at 340 nm, at which absorption by NADH is at a maximum.

If not available, a photometer using a source with a discontinuous spectrum enabling measurements to be made at 334 nm or at 365 nm, may be used.

2.2.   Glass cells of 1 cm optical path length or single‑use cells.

2.3.   Micropipettes enabling the selection of volumes from 0.02 to 2 mL.

 

  1. Reagents
    1.    Buffer solution (0.75 M glycylglycine, M, pH = 7.4)

Dissolve 10.0 g of glycylglycine and 0.25 g of magnesium sulfate (Mg) in about 80 mL of double distilled water, add about 2.4 mL of 5 M sodium hydroxide solution to obtain a pH of 7.4 and make up to 100 mL. This buffer solution may be kept for 3 months at + 4°C.

3.2.   (NADH 8.2.10-3 M, ATP 33.10-3 M, PEP 46.10-3 M)

Dissolve:

  • 42 mg of nicotinamide‑adenine‑dinucleotide reduced ‑ Na2
  • 120 mg of adenosine‑5'‑triphosphate,
  • 60 mg of phosphoenol pyruvate, Na and
  • 300 mg of sodium bicarbonate (NaH)
  • in 6 mL of double distilled water.

This may be kept for 2‑3 days at + 4oC.

3.3.  Pyruvate‑kinase/lactate‑dehydrogenase (PK/LDH)

(PK 3 mg /mL, LDH 1 mg /mL)

Use the suspension without diluting it.

This may be kept for a year at about + 4oC.

3.4.  Glycerokinase (GK 1 mg/mL)

The suspension may be kept for a year at about + 4oC. 

Note:  All reagents needed for the above are available commercially.

  1. Preparation of sample

 

The determination of glycerol is generally made directly on the wine, which is diluted with double distilled water so that the resulting glycerol concentration is between 30 and 500 mg/L.  Wine diluted 2 /100 is usually sufficient.

 

  1. Procedure

With spectrophotometer adjusted to 340 nm wavelength the absorbance measurements are made in the glass cells with optical path length of 1 cm, with air as a reference.

Into cells with 1 cm optical paths place the following:

Reference cell

Sample cell

Solution 3.1

1.00 mL

1.00 mL

Solution 3.2 

0.10 mL

0.10 mL

Sample to be measured 

-

0.10 mL

Water

2.00 mL

1.90 mL

Suspension 3.3

0.01 mL

0.01 mL

Mix, and after about 5 min, read the absorbances (A1). Start the reaction by adding

Suspension 3.4

0.01 mL

0.01 mL

Mix, wait until the end of the reaction (5 to 10 min), read the absorbance of the solutions ().  Read the absorbance after 10 min and check every 2 min until the absorbance is constant for 2 min.

Calculate the differences in the absorbance:

for the reference and sample cells.

Calculate the differences in absorbance between the reference cell (AT) and the sample cell (AD) using the equation:

  1. Expression of results

6.1.   Calculation

The general formula for calculating the concentration is:

V = volume of the test in mL (3.12 mL)

v  = volume of the sample mL (0.1 mL)

PM = molecular weight of the substance to be determined (glycerol = 92.1)

d = optical path length of the cell (1 cm)

= absorption coefficient of NADH at 340 nm

When using the amounts given in brackets this reduces to:

F = dilution factor

Note:

Measurement at 334 nm, ε = 6.2 (mmol1 x l x cm1)

Measurement at 365 nm, ε = 3.4 (mmol1 x l x cm1)

Bibliography

  • BOERHINGER, Mannheim, Methods of Enzymatic and chemical analysis, documentation technique.

Determination of isotopic ratio of ethanol (Type-II)

OIV-MA-AS312-06 Determination by isotope ratio mass spectrometry of wine ethanol or that obtained through the fermentation of musts, concentrated musts or grape sugar

Type II method

 

  1. Field of application

The method enables the measuring of isotope ratio 13C/12C of ethanol in wine and ethanol obtained after fermentation of products derived from the vine (musts, concentrated musts, grape sugar).

  1. Reference standards

 

ISO 5725 :1994 «Accuracy (trueness and precision) of measurement methods and results: Basic method for the determination of repeatability and reproducibility of a standard measurement method»

V-PDB :Vienna-Pee-Dee Belemnite (= 0.0112372).

Method OIV «Detection of enriching musts, concentrated musts, grape sugar and wine by application of nuclear magnetic deuterium resonance (RMN‑FINS):»

  1. Terms and definitions

13C/12C: Carbon 13 and carbon 12 isotope ratio for a given sample

C : Carbon 13 contents (13C) expressed in parts per 1000 (‰)

RMN-FINS:  Fractioning the specific natural isotope studied by nuclear magnetic resonance

V-PDB: Vienna-Pee-Dee Belemnite. or PDB, is the main reference for measuring natural variations of carbon 13 isotopic contents. Calcium carbonate comes from a Cretaceous belemnite from the Pee Dee formation in South Carolina (USA). Its isotopic ratio 13C/12C or = 0.0112372. PDB reserves have been exhausted for a long time, but it has natural variations of Carbon 13 isotopic contents. Reference material is calibrated based on this content and is available at the International Agency of Atomic Energy (IAEA) in Vienna (Austria). The isotopic indications of naturally occurring carbon 13 are expressed by V-PDB, as is the custom.

m/z: Mass to charge ratio

  1. Principle

 

During photosynthesis, the assimilation of carbonic gas by plants occurs according to 2 principle types of metabolism that are: metabolism  (Calvin cycle) and C4 (Hatch and Slack). These two means of photosynthesis present a different type of isotope fractionation. Products, such as sugars and alcohol, derived from plants and fermentation, have higher levels of Carbon 13 than from .plants. Most plants, such as vines and sugar beets belong to the .group. Sugar cane and corn belong to the group C4. Measuring the carbon 13 content enables the detection and the quantification of C4 (sugar cane or corn isoglucose) origin sugars which are added to products derived from grapes (grape musts, wines). The combined information on carbon 13 content and information obtained from RMN-FINS enable the quantification of mixed sugars added or alcohol of plant origin C3 and C4.

The carbon 13 content is determined by carbonic gas resulting from the complete combustion of the sample. The abundance of main mass isotopomers 44 (12C16O2), 45 (13C16O2 et 12C17O16O) and 46 (12C16O18O), resulting from different possible combinations of isotopes 18O, 17O, 16O, 13C et 12C, are determined from ionic currents measured by three different collectors of mass isotopic spectrometers. The contributions of isotopomers 13C17O16O et 12C17O2 are sometimes neglected because of their small presence. The ionic current for m/z = 45 is corrected for the contribution of 12C17O16O which is calculated according to the current intensity measured for m/z = 46 while considering the relative abundance of 18O et 17O (Craig adjustment). The comparison with the calibrated reference and the international reference V-PDB enable the calculation of carbon 13 content on a relative scale of C.

  1. Reagents

The material and the consumables depend on the apparatus (6) used by the laboratory. The systems generally used are based on elementary analysers. These systems can be equipped to introduce the samples placed in sealed metal capsules or for the injection of liquid samples through a septum using a syringe.

Depending on the type of instrument used, the reference material, reagents, and consumables can be used:

Reference material  available from the  AEA:

Name

Material

-IAEA-CH-7

polyethylene

-31.8%

-NB22

Oil

-29.7%

-USGS24

Graphite

-16.1%

available from the IRMM de Geel (B) (Institut des Matériaux et Mesures de Référence) :

Name

Material

-CRM 656

Wine alcohol

-26.93%

-CRM 657

Glucose

-10.75%

-CRM 660

Hydroalcoholic solution (TAV 12%)

-26.72%

Standard work sample with a known calibrated 13C/12C ratio with international reference materials.

A standard list of consumables established for continuous flow systems follows here under :

  • Helium for analysis (CAS 07440-59-7)
  • Oxygen for analysis (CAS 07782-44-7)
  • Carbon dioxide for analysis, used as a secondary reference gas for the content of carbon 13 (CAS 00124-38-9)
  • Oxidation reagent for the oven and the combustion system as follows:
  • copper oxide () for elementary analyzed (CAS 1317-38-0)
  • Drying agent to eliminate water produced by combustion. For example:

anhydrone for elementary analysis (magnesium perchlorate) (CAS 10034-81-8).

This is not necessary for apparatuses equipped with a water elimination system by cryo-trapping or through selective permeable capillaries.

  1. Apparatus and material

 

6.1.  Isotope ratio mass spectometry (IRMS)

Isotope ratio mass spectometry (IRMS) enables the determination the relative contents of 13C of CO2 gas naturally occurring with an internal accuracy of 0.05‰ or expressed in relative value (9). Internal accuracy here is defined as the difference between 2 measurements of the same sample of CO2.  the mass spectrometer used to measure isotope ratios is generally equipped with a triple collector to simultaneously measure m/z= 44, 45 and 46 intensities. The isotope ratio mass spectrometry must either be equipped with a double introduction system to alternately measure the unknown sample and a reference sample, or use an integrated system that carries out quantitative combustion on samples and separates the carbon dioxide from the other combustion products before measuring the mass spectrum.

6.2.  Combustion apparatus

Combustion apparatus able to quantitively convert ethanol in carbon dioxide and able of eliminating all other combustion products including water, without any isotopic fractioning. The apparatus can be either an integrated continual flow system integrated with mass spectometry (6.2.1), of an autonomous combustion system (6.2.2). The apparatus must be as precise as indicated in (11).

6.2.1.      Continual flow system

These are made up by an elementary analyser, either by chromatography in gaseous state equipped with an online combustion system.

The following laboratory material is used for systems equipped for the introduction of samples contained in metallic capsules :

  • volumetric micropipette with appropriate cones
  • scale with μg accuracy or better
  • pliers for encapsulation
  • tin capsules for liquid samples
  • tin capsules for solid samples

The following laboratory material is needed when using an elementary analyser equipped with a liquid injector or in the case of a preparation system for combustion chromatography:

  • syringe for liquids
  • flasks equipped with sealed closing system and inert septa

The laboratory material indicated in the lists are examples that are susceptible of being replaced by other equivalent performance material depending on the type of combustion apparatus and of mass spectometry used by the laboratory.

6.2.2.      Autonomous preparation system

The samples of carbon dioxide resulting from the combustion of samples to be analyzed and the reference sample are collected in bulbs which are then put in a double entry spectometry system to carry out isotopic analyses. Several combustion apparatuses described in writings can be used:

  • Closed combustion system filled with oxygen gas circulating
  • Elementary analyser with helium and oxygen flow
  • Bulb sealed in glass filled with copper oxide () used as an oxidation agent
  1. Preparation of samples for trials

 

Ethanol must be extracted from wine before isotopic testing. This is carried out by distilling wine as described in §3.1 using the RMN-FINS method.

Sugars must be fermented in ethanol first as described in the RMN-FINS  method in the case of grape musts, concentrated rectified grape musts (grape sugar).

  1. Procedure

All preparation steps must be carried out without any significant ethanol loss through evaporation, which would change the isotopic composition of the sample.

The description that follows makes reference to the procedure generally used for ethanol sample combustion using commercial automatic combustion systems. All other methods, ensuring that ethanol samples are converted by quantity in carbon dioxide without the evaporation of ethanol, can use the preparation of carbon dioxide for isotopic analyses.  An experimental procedure based on the usage of an elementary analyser:

a) Placing the samples in capsules

  • use capsules, a tweezers and a clean preparation tray
  • take an appropriate sized capsule using a tweezers
  • introduce an appropriate amount of liquid into the capsule using a micropipette

 

Note: 3.84 mg of absolute ethanol or 4.17 mg of distillate with an alcohol content of 92% m/m are necessary to obtain 2 mg of carbon. The appropriate quantity of distillate must be calculated in the same way according to the quantity of carbon necessary based on the mass spectometry instruments’ sensitivity.

  • close the capsule with the tweezers.
  • each capsule must be completely sealed. If not, it must be discarded and the capsule must be repaired.
  • two capsules must be prepared for every sample
  • place the capsules in an appropriate place on the tray elementary analyser sample. Every capsule must be carefully identified in order by number .
  • systematically place capsules containing work references at the beginning and the end of  the sample series
  • regularly insert a check sample in the sample series.

b) check and adjust the elementary analysis and mass spectometry instruments

  • adjust the temperature of the elementary analyzer ovens and the helium and oxygen gas flow for an optimal combustion of the sample;
  • check the elementary analysis system and the mass spectometry system for leaks (for example by checking the ionic current where m/z = 28 corresponding to N2.);
  • adjust the mass spectrometer to measure the intensities of ionic current where m/z = 44, 45 and 46;
  • check the system using known reference samples before starting to measure the samples.

c) To carry out a series of measurements

The samples that are placed under the elementary or chromatography are introduced successively. The carbon dioxide for each sample combustion is eluted towards the mass spectrometer which measures the ionic current. The interface computer records the ionic current intensities and calculates the values  for each sample (9).

  1. Calculation

The objective of the method is to measure the isotopic ratio 13C/12Cethanol extract from wine or from products derived from grapes following fermentation. The isotopic ratio 13C/12Ccan be expressed by its deviation compared to the reference work. Carbon 13 (C)’s isotopic ratio is calculated on a delta scale per thousand by comparing the results obtained for the sample to be measured to the reference work calibrated before based on the primary international reference (V-PDB). The values C are expressed compared to reference work:

 

where and are respectively the isotopic ratio13C/12C of the sample and the work reference.

The values C are thus expressed using V-PDB:

where is the isotopic deviation determined beforehand for the work reference to V-PDB.

Small variations may occur while measuring on line due to changes in the instrumental conditions. In this case the  13C samples must be corrected according to the difference in the value 13C from the work reference and the real value, which was calibrated beforehand against V-PDB by comparison with one of the international reference materials.Between two measurements of the reference work, the variation is the correction applied to the sample results that may be assumed to be linear. The reference work must be measured at the beginning and at the end of all sample series. A correction can be calculated for each sample using linear interpolation between two values ( the difference between the assigned value of the reference work and the measurements of obtained values).

  1. Quality insurance and control

Check that the value 13C for the reference work does not differ by more than 0.5‰ of the admitted value. If not, the spectrometer instrument adjustments must be checked and possibly readjusted.

For each sample, verify that the difference in result between the 2 capsules measured successively is under 0.3‰. The final result for a given sample is the average value between the 2 capsules. If the deviation is higher than 0.3‰ the measurement should be repeated.

Measurement condition monitoring can be based on the ionic current intensity where m/z = 44 and is proportional to the quantity of carbon injected in the elementary analyzer. Under standard conditions, the ionic current intensity should be almost constant for the samples analysed. A significant deviation could be indicative of ethanol evaporation (an imperfect seal on a capsule), an instability of the elementary analyser or the mass spectrometer.

 

  1. Method performance traits (Accuracy)

One joint analysis (11.1) was carried out on distillates containing alcohol of vinous origin and cane and beet alcohol, in addition to different mixtures of these three origins. This study did not take into account the distillation step, further information from other joint laboratory studies on wine (11.2) and namely circuits of aptitude tests (11.3) for isotopic measurements were also considered. The results show that different distillation systems under satisfactory conditions, and in particular those used to measure RMN‑FINS, do not have significant varieties for determining 13C of ethanol in wine.  The precision parameters observed for wine are almost identical to those obtained in the joint study on distillates (11.1) sur les distillats.

11.1.        Joint study on distillates

Year of joint laboratory study

1996

Number of laboratories

20

Number of samples

6 samples in double blind comparison

Analysis

Sample code

Vinous origin alcohol

Beet alcohol

Sugar cane alcohol

A & G

80%

10%

10%

B & C

90%

10%

0%

D & F

0%

100%

0%

E & I

90%

0%

10%

H & K

100%

0%

0%

J & L

0%

0%

100%

Samples

A / G

B / C

D / F

E / I

H / K

J / L

Number of laboratories retained after eliminating  aberrant results

19

18

17

19

19

19

Number of results accepted

38

36

34

38

38

38

Average value (C) ‰

-25.32

-26.75

-27.79

-25.26

-26.63

-12.54

Sr2

0.0064

0.0077

0.0031

0.0127

0.0069

0.0041

Repeatability standard deviation (Sr) ‰

0.08

0.09

0.06

0.11

0.08

0.06

Repeatability limit r (2,8×Sr) ‰

0.22

0.25

0.16

0.32

0.23

0.18

SR2

0.0389

0.0309

0.0382

0.0459

0.0316

0.0584

Reproductability standard deviation (SR) ‰

0.20

0.18

0.20

0.21

0.18

0.24

Reproductability limit R (2,8× SR) ‰

0.55

0.9

0.55

0.60

0.50

0.68

11.2.        Joint laboratory study on two wines and one alcohol

Year of joint laboratory trial

1996

Number of laboratories

14 for distillation of wine and 7 for also measuring of ethanol in wine

Number of samples

3 (White wine TAV 9.3% vol., White wine TAV 9.6% Alcohol strength 93% m/m)

Analysis

of ethanol

Samples

Red wine

White wine

Alcohol

Number of laboratories

7

7

8

Number of accepted results

7

7

8

Average value (C) ‰

-26.20

-26.20

-25.08

Reproductability variance SR2

0.0525

0.0740

0.0962

Reproductability standard deviation (SR) ‰

0.23

0.27

0.31

Reproductability limit R (2,8× SR) ‰

0.64

0.76

0.87

Different distillation systems were used by the participating laboratories. The isotopic indications carried out in one laboratory on the whole number of distillates returned by the participants, does not reveal any absurd values or significant distinct average values. The variation in results ( = 0.0059) is comparable to repeatability variances from the joint study on distillates (11.1).

 

11.3.        Results from the exercises of aptitude circuits to isotopic trials

Since December 1994 international aptitude exercises to determine the isotopic measurements for wine and alcohol (TAV distillates 96% vol.) have been regularly organized. The results enable participating laboratories to check the quality of their analyses. Statistical results enable the appreciation of the variety of derterminants under the reproductability conditions. This enables the estimating  the variance parametres and the reproductability limit. The results obtained for the wine and distillate ethanol C determants are summarized in the table below:

Wine

Distillates

Date

N

SR

S2R

R

N

SR

S2R

R

Dec. 1994

6

0.210

0.044

0.59

6

0.151

0.023

0.42

June 1995

8

0.133

0.018

0.37

8

0.147

0.021

0.41

Dec. 1995

7

0.075

0.006

0.21

8

0.115

0.013

0.32

March 1996

9

0.249

0.062

0.70

11

0.278

0.077

0.78

June 1996

8

0.127

0.016

0.36

8

0.189

0.036

0.53

Sept. 1996

10

0.147

0.022

0.41

11

0.224

0.050

0.63

Dec. 1996

10

0.330

0.109

0.92

9

0.057

0.003

0.16

March 1997

10

0.069

0.005

0.19

8

0.059

0.003

0.16

June 1997

11

0.280

0.079

0.78

11

0.175

0.031

0.49

Sept 1997

12

0.237

0.056

0.66

11

0.203

0.041

0.57

Dec. 1997

11

0.127

0.016

0.36

12

0.156

0.024

0.44

March 1998

12

0.285

0.081

0.80

13

0.245

0.060

0.69

June 1998

12

0.182

0.033

0.51

12

0.263

0.069

0.74

Sept 1998

11

0.264

0.070

0.74

12

0.327

0.107

0.91

Weighted

average

0.215

0.046

0.60

0.209

0.044

0.59

N: number of participating laboratories

  1. Biblography

 

  • Detecting enrichment of musts, concentrated musts, grape and wine sugars by application of nuclear magnetic resonance of deuterium  (RMN-FINS/SNIF-NMR)
  • OIV Recueil des méthodes internationales d’analyse des vins et des moûts.
  • E.C. Regulation. Community analytical methods which can be applied in the wine sector, N°.2676/90.  Detecting enrichment of grape musts, concentrated grape musts, rectified concentrated grape musts and wines by application of nuclear magnetic resonance of deuterium (SNIF-NMR)
  • Official Journal of the European Communities, NoL 272, Vol 33, 64-73, 3 October 1990.
  • Inter-laboratory study about the determination of 13C in wine ethanol OIV FV No 1051
  • Fidelité de la determination du rapport isotopique 13C/12C de l’éthanol du vin OIV FV No 1116.
  • Stable carbon isotope content in ethanol of EC data bank wines from Italy, France and Germany. A Rossmann ; H-L Schmidt ; F. Reniero ; G. Versini ; I. Moussa ; M.-H. Merle. Z. Lebensm. Unters. Forsch., 1996, 203, PP. 293-301.

Glycerol (GC-C-IRMS or HPLC-IRMS method) (Type-IV)

OIV-MA-AS312-07 Method for the determination of the isotope ration of glycerol in wines by gas chromatography, combustion or high performance liquid chromatography coupled to isotopic ratio mass spectrometry (GC-C-IRMS or HPLC-IRMS

Type IV method

  1. Scope

The present methods, based on gas chromatography [1] or liquid chromatography [2] coupled to an isotope ratio mass spectrometer (GC-C-IRMS or HPLC-IRMS), permit measurements of the ratio of glycerol. If its quantification is required simultaneously with the isotope ratio, GC-IRMS may be used.

The use of 1,5-pentanediol, as internal standard, also allows the determination of the glycerol concentration during the same analysis of the ratio.

  1. Definitions

: ratio of carbon-13 () to carbon-12 () isotopes for a given sample.

δ: carbon-13 content () expressed in parts per 1000 (‰, per mil).

GC-C-IRMS: hyphenated technique of gas chromatography coupled to a combustion interface and isotope ratio mass spectrometry.

V-PDB: Vienna-Pee-Dee-Belemnite. PDB is the primary reference material for measuring natural variations of carbon-13 isotope content, consisting of calcium carbonate from a Cretaceous belemnite rostrum from the Pee Dee Formation in South Carolina (USA). Its isotope ratio or RPDB is 0.0112372. PDB reserves have been exhausted for a long time, but it has remained the primary reference for expressing natural variations of carbon-13 isotope content and against which the reference material available at the IAEA (International Atomic Energy Agency) in Vienna (Austria) is calibrated. Isotopic indications of naturally occurring carbon-13 are conventionally expressed in relation to V-PDB.

  1. Principle

A significant difference exists between the carbon-13 content of sugars from plants following the different photosynthetic (Calvin cycle) and (Hatch-Slack) cycles. Most plants, such as the vine and beet, belong to the C3 group, whilst maize and cane belong to the C4 group. The carbon-13 contents of the sugar and of the corresponding metabolites obtained by fermentation (ethanol, glycerol) are correlated.

The measurement of the carbon-13 content of glycerol may enable possible detection of addition of glycerol from maize (plant) or from synthesis (fossil sources) to wines or to spirit drinks.

The separation of glycerol from the wine matrix is achieved using gas or liquid chromatography.

In GC-C-IRMS, after the chromatographic separation the effluent undergoes a combustion and a reduction step, passing through the oxidation and the reduction ovens of a combustion interface. Components other than the glycerol, namely the solvent, are vented with a back-flush valve during the run, to avoid oven soiling and interferences in chromatograms. The carbon-13 content is determined on the carbon dioxide gas resulting from the oxidation of the glycerol contained in the sample. Once the glycerol is oxidized, and are produced. Water produced during the combustion is eliminated by a water-removing trap, consisting of a Nafion® membrane. The carbon dioxide is eluted by a helium stream to the IRMS source for analysis.

In HPLC-IRMS, after the chromatographic separation the sample is oxidized while still in the mobile phase at the interface. The formed is removed on-line from the solvent stream through a gas-exchange membrane into a stream of He. This He stream passes through a water trap consisting of a Nafion® membrane, and is then admitted to the ion source of the IRMS via an open split.

The various possible combinations of the and , isotopes lead to the mass 44 corresponding to the isotopomer, the mass 45 corresponding to  and species and the mass 46 to the isotopomer ( and can be neglected due to their very low abundance). The corresponding ion currents are determined on three different collectors. The ion current m/z 45 is corrected for the contribution of which is computed from the current intensity measured for m/z 46 by considering the relative abundance of and (Craig correction). The comparison with a reference calibrated against the international standard V-PDB permits the calculation of the carbon-13 content on the δ‰ relative scale.

  1. Reagents

The following reagents and working standards should be used:

4.1.  Anhydrous ethanol (CAS number 64-17-5).

4.2.  Pure glycerol ≥ 99 % (CAS 56-81-5).

4.3.  1,5-pentanediol (CAS 111-29-5).

4.4.  Bulk solution of 1,5-pentanediol (4.3) in ethanol (4.1). This solution prepared at a precisely known concentration, in the range of 0.5 to 1.0 g L-1 is used to dilute wine samples.

4.5.  Orthophosphoric acid

4.6.  Sodium peroxodisulfate, used as oxidation reagent

4.7.  Helium for analysis, used as carrier gas (CAS 07440-59

4.8.  Oxygen for analysis, used as regenerating gas for the combustion reactor (CAS 07782-44-7).

4.9.  Cylinder of carbon dioxide for analysis, used as a secondary reference gas for the carbon-13 content (CAS 00124-38-9).

4.10.        Working standard samples of glycerol with a known ratio calibrated against international reference materials.

4.11.        Working standard samples of 1,5-pentanediol with a known ratio calibrated against international reference materials.

 

  1. Apparatus and equipment

5.1.   Isotope ratio mass spectrometer

Isotope ratio mass spectrometer (IRMS) capable of determining the relative content of naturally-occurring gas with an internal accuracy of 0.05 ‰ or better expressed as a relative value (point 8. Calculation). Internal accuracy here is defined as the difference between two measurements of the same sample of . The mass spectrometer used to measure isotope ratios is equipped with a triple collector to simultaneously measure intensities for m/z = 44, 45 and 46. The IRMS is equipped with software for running the analysis, acquisition of data and processing of analytical results for computation of isotope ratios.

5.2.  Gas chromatograph

Gas chromatograph (GC) coupled through a combustion interface to an isotope ratio mass spectrometer (5.1).

The gas chromatograph must be equipped with a polar capillary column enabling the chromatographic separation of glycerol from the other wine components (e.g. Chrompack WCOT fused silica capillary column filled with bonded polyethylene glycol CP-Wax-57 CB, 25 m, 0.25 mm id, 0.20 μm film thickness).

Combustion interface generally made up of an oxidation reactor (a ceramic tube containing nickel, platinum and copper wires) and of a reduction reactor (ceramic tube containing copper wires).

5.3.  Liquid chromatograph

Liquid chromatograph (LC) coupled through a LC Isolink interface to an isotope ratio mass spectrometer (5.1).

The liquid chromatograph must be equipped with a column enabling the chromatographic separation of glycerol from the other wine components without using organic solvents or additives (e.g. HyperREZ Carbohydrate H+, 30 cm, 8 mm).

Isolink interface made up of a capillary oxidation reactor and a membrane exchanger (three membranes).

5.4.   Equipment

Usual laboratory equipment and in particular the following:

  • Sample injection syringes or autosampler
  • Volumetric flasks, 0.2 μm filters, chromatographic vials and 10 μL syringe for liquids.

The laboratory equipment indicated in the above list is an example and may be replaced by other equipment of equivalent performance.

  1. Preparation of test samples

6.1.   determination of glycerol by GC-C-IRMS

Each wine sample is filtered on a 0.2 μm filter and then an aliquot is diluted (in the ratio 1:4) with ethanol. Each sample is then transferred to an appropriate chromatographic vial which is then tightly closed and stored at T 4 °C until analysis.

6.2.  ratio of glycerol and its quantification by GC-C-IRMS

Each wine sample is filtered on a 0.2 μm filter and then an aliquot is diluted (in the ratio 1:4) with the bulk solution of 1,5-pentanediol (4.4). Each sample is then transferred to an appropriate chromatographic vial which is then tightly closed and stored at T 4 °C until analysis.

6.3.  determination of glycerol by HPLC-IRMS

Each wine sample is filtered on a 0.2 μm filter and then an aliquot is diluted with water. Each sample is then transferred to an appropriate chromatographic vial which is then tightly closed and stored at T 4 °C until analysis

  1. Procedure

7.1.   GC-C-IRMS

The following description refers to the procedures generally used for glycerol isotope-ratio determination using commercial automated GC-C-IRMS systems.

Procedures may be adapted according to changes introduced by the manufacturers. Note: volumes, temperature, flows and times are indicative. The correct values should be optimized according to the manufacturer’s instructions.

7.1.1. Working conditions

Using the column and combustion interface described as an example in 5.2 the following parameters can be applied:

  • The injector temperature is set to 270 °C.
  • B. The temperature program is set as follows: initial column temperature of 120 °C; a holding time of 2 min; then a temperature increase at a rate of 10 °C min-1, up to the final value of 220 °C, with a final holding time of 2 min.

Each run takes 14 min, not taking into account the time needed for cooling.

  • C. He is used as the carrier gas.
  • D. The temperatures of the combustion and reduction reactors of the GC combustion interface are set to 960 and 640°C respectively.
  • E. In each injection 0.3 μL of sample solution is introduced into the column using a high-split mode (split flow 120 mL min-1).

At regular intervals (e.g. once a week) re-oxidation of the oxidation reactor with O2 is required (the intervals depend on the total amount of substances that has passed through the reactor).

7.1.2. ratio of glycerol

During each analysis, at least two pulses of reference gas (4.9) from the cylinder are introduced. This is previously calibrated against other V-PDB-calibrated international standards, themselves calibrated against international IAEA standards. The reference gas may also be calibrated against in-house standards.

Each wine sample (6.1) is injected 3 times. Suitable control references must be included in each batch.

A typical batch is as follows:

  • Control Sample
  • Control Sample
  • Sample 1
  • Sample 1
  • Sample 1
  • Sample 2

Each sample is measured 3 times

  • …..
  • Sample 6
  • Sample 6
  • Sample 6
  • Control sample
  • Control sample

The control sample is an ethanol solution of glycerol with a known accurately-measured δ

value (by an elemental analyser-IRMS for instance) and enables possible drift during the sequence of measurements to be checked and the correction of results.

7.1.3. ratio of glycerol and its quantification

If quantification of glycerol is required at the same time as isotope ratio measurement, the previous procedure (7.1.2) is applied to the samples prepared as described in 6.2.

The 1,5-pentanediol (4.3) permits the determination of the concentration of glycerol. Furthermore, δ values for the internal reference can be used to assess the correctness of the injections and the quality control of the isotopic determinations and of the combustion reaction step.

The concentration of glycerol in wine samples is determined using the internal-standard method. To do this, a calibration curve must be produced, using a constant known concentration for the internal standard, 1,5-pentanediol, and five glycerol solutions at different known concentrations, from 0.50 to 10 g L-1. These solutions are prepared by weighing and dissolving glycerol (4.2) and 1,5-pentanediol in ethanol (4.1), using volumetric flasks. Ensure that the response is linear by successively analysing in triplicate each of the linearity standard solutions containing the internal standard.

7.2.   HPLC-IRMS

The following description refers to the procedures generally used for glycerol isotope ratio determination using commercial automated HPLC-IRMS systems.

Procedures may be adapted according to changes introduced by the manufacturers. Note: volumes, temperature, flows and times are indicative. The correct values should be optimized according to the manufacturer’s instructions.

7.2.1. Working conditions

Using the column and interface described as an example in 5.3 the following parameters can be applied:

  • A.Flow rate of the eluent is set at 400 L min-1
  • B. Flow rate of the acid and oxidant reagents in the LC interface is set at 40 and 30 μL min-1, respectively
  • C. The temperatures of the interface reactor and the column are set at 99.9 and 65 °C, respectively
  • D. Helium flow rate of the separation unit is set at 1 L min-1

The reagent bottles are degassed with helium during the complete chromatographic run.

7.2.2. ratio of glycerol

During each analysis, at least two pulses of reference gas (4.9) from the cylinder are introduced (see example of chromatogram in 11.2). This is previously calibrated against other V-PDB-calibrated international standards, themselves calibrated against international IAEA standards. The reference gas may also be calibrated against in-house standards.

Each wine sample (6.3) is injected 3 times. Suitable control references must be included in each batch.

A typical batch is as follows:

  • Control sample
  • Control sample
  • Sample 1
  • Sample 1
  • Sample 1
  • Sample 2

Each sample is measured 3 times

  • …..
  • Sample 6
  • Sample 6
  • Sample 6
  • Control sample
  • Control sample

The control sample is a solution of glycerol with a known accurately measured δ value (by an elemental analyser-IRMS for instance) and enables possible drift during the sequence of measurements to be checked  and the correction of results.

  1. Calculation
    1.   ratio

The isotope ratio can be expressed by its deviation from a working reference.

The isotopic deviation of carbon-13 (δ) is then calculated on a delta scale per thousand (δ/1000 or δ ‰) by comparing the results obtained for the sample to be measured with those for a working reference, previously calibrated on the basis of the primary international reference (V-PDB). During analyses, a reference gas is introduced, which is calibrated against other PDB-calibrated international standards.

The δ values are expressed in relation to the working reference as follows:

where and are respectively the isotope ratios of the sample and of the carbon dioxide used as the reference gas (4.9).

The δvalues are expressed in relation to V-PDB as follows:

where is the previously determined isotopic deviation of the working reference from V-PDB

Small variations may occur while measuring on-line due to changes in the instrumental conditions. In this case the δvalues of the samples must be corrected according to the difference between the measured δ value of the standard working sample and its true value, previously calibrated against V-PDB by comparison with one of the international reference materials. Between two measurements of the standard working sample, the variation, and therefore the correction to be applied to the results obtained from the samples, may be assumed to be linear. The standard working sample must be measured at the beginning and at the end of all sample series. A correction can then be calculated for each sample using linear interpolation.

8.2.   Glycerol concentration by GC-IRMS

When producing the calibration curve, for each injection, the measured parameter which is taken into account is the area S (in V*s) given by the spectrometer.

Calculate the ratio R as expressed in equation 1 below, and plot a graph of R versus the concentration ratio of glycerol to the internal standard (IS), C.

A linear plot should be obtained, with a correlation coefficient of at least 0.99.

Equation 1

Using the analytical conditions described (7.1.1), 1,5-pentanediol being less polar than glycerol shows a retention time of around 310 sec, while that of glycerol is 460 sec ((see  example of a chromatogram in 11.1).

The concentration of glycerol in each injection is calculated using the following equation:

Equation 2

Where:

is the concentration in g L-1 of the species in the sample;

is the area of the peaks produced;

K ( the response factor) is calculated as follows:

Equation 3 (see 8.2)

The St suffix indicates the concentrations and the areas of 1,5‑pentandiol and glycerol in the  five standard solutions prepared for the calibration (7.1.3);

Dilution factor: considering the sampling conditions described above (7), the dilution factor is 4.

The concentration value in g L1 of each sample is the mean of the three injections

  1. Qulaity assurance and control
    1.    GC-C-IRMS

For each sample, check that the standard deviation (SD) in three vials measured successively is less than 0.6 ‰. The final result for a given sample is the average value for the three measurements. If the deviation is greater than 06 ‰, the measurement must be repeated.

Checks on correct measurement can be based on the ion current of m/z = 44, which is proportional to the quantity of carbon injected into the system. Under standard conditions, the ion current should be almost constant for the samples analysed. A significant deviation could be indicative of imperfect separation and oxidation of glycerol or instability of the mass spectrometer.

9.2.   HPLC-IRMS

Check that the 13C value for the working reference does not differ by more than 0.5 ‰ from the admissible value. If not, the spectrometer settings should be checked and, if necessary, adjusted.

For each sample, check that the standard deviation (SD) in three vials measured successively is less than 0.6 ‰. The final result for a given sample is the average value for the three measurements. If the deviation is greater than 0.6 ‰, the measurement must be repeated.

Checks on correct measurement can be based on the ion current of m/z = 44, which is proportional to the quantity of carbon injected into the system. Under standard conditions, the ion current should be almost constant for the samples analysed. A significant deviation could be indicative of imperfect separation and oxidation of glycerol or instability of the mass spectrometer.

  1. Performance characteristics of the method

10.1.         GC-C-IRMS

10.1.1.   Precision

Preliminary studies have been performed on 4 synthetic wine solutions (water-ethanol-glycerol), prepared using glycerol samples of different origins and with a δ value already determined by EA-IRMS. For the 3 repetitions, n=3, using the GC-C-IRMS technique a standard deviation SD 0.6 ‰ was considered acceptable.

Precision can be affected by overlapping between 1,5-PD and other wine components or by-products when measuring sweet wines.

10.1.2.  Determination of the concentration of glycerol

For the validation of this method, 2 glycerol solutions were used. Assuming that the typical concentration of glycerol is 4 to 10 g L-1 in dry wine, the 2 solutions represent this range. The first solution was 4.0 g L-1 and gave an experimental concentration of 3.6 g L-1 (SD=0.2, n=8). The second solution, 8.0 g L-1, gave a value of 7.9 g L-1 (SD=0.3, n=8).

Furthermore, 5 wine samples (A-E) already analysed for their glycerol concentration using other methods* through the BIPEA proficiency–testing scheme were injected to test the method.

Une image contenant table

Description générée automatiquement 

The concentrations of glycerol found by GC-C-IRMS are consistent with the values obtained using other analytical techniques such as enzymatic determination or HPLC.

10.2.         HPLC-IRMS

Internal validation of HPLC-IRMS method

For the validation of the HPLC-IRMS method, the following samples have been used: a glycerol standard, three synthetic wines (glycerol concentrations ranged within typical concentration found in wines) and a wine.

The precision of the measurement for glycerol was determined by repeating the analysis ten times on each sample, under repeatable conditions, and by performing ten independent analyses on the same sample on three different days, under reproducible conditions (Table 2).

Table 2. Accuracy and precision of δ13C values of glycerol obtained by HPLC-IRMSa

HPLC-IRMS

Day 1

Day 2

Day 3

Precision

Sample

Repetitions per sample

Mean  δ

(‰)

SD (‰)

Mean  δ

(‰)

SD (‰)

Mean  δ

(‰)

SD (‰)

r

(‰)

R

(‰)

Glycerol (standard)b

10

-27.99

0.05

-27.94

0.04

-27.95

0.08

0.17

0.18

Synthetic wine

(6 g/l)

10

-28.06

0.13

-28.14

0.12

-28.14

0.11

0.34

0.35

Synthetic wine

(8 g/l)

10

-28.11

0.12

-28.18

0.07

-28.21

0.07

0.25

0.28

Synthetic wine

(10 g/l)

10

-28.06

0.06

-28.06

0.09

-28.05

0.09

0.23

0.24

Wine

10

-28.88

0.10

-28.85

0.27

-28.72

0.23

0.60

0.62

 aValues of δ are expressed in ‰ vs V-PDB

bEA-IRMS glycerol (standard) result: -28.02 + 0.09 ‰

The following performance parameters for determining the δ of glycerol were obtained from a wine sample:

Repeatability r: 0,60 ‰

Reproducibility R: 0,62 ‰

  1. Annex

11.1.        Typical chromatogram of a GC-C-IRMS analysis of glycerol in wine

11.2.        Typical chromatogram of a HPLC-IRMS analysis of glycerol

 

  1. Bibliography
  • Calderone G., Naulet N., Guillou C., Reniero F., “Characterization of European wine glycerol: stable carbon isotope approach”. Journal of Agricultural and Food Chemistry, 2004, 52, 5902-5906
  • Cabanero AI, Recio JL, Ruperez M. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry