Update of the method for determining the density of wine (Method OIV-MA-AS2-01A)

Status: In force

Update of the method for determining the density of wine (Method OIV-MA-AS2-01A)

RESOLUTION OIV-OENO 437-2012

UPDATE OF THE METHOD FOR DETERMINING THE DENSITY OF WINE (METHOD OIV-MA-AS2-01A)

THE GENERAL ASSEMBLY

IN VIEW of article 2, paragraph 2 iv of the Agreement dated 3 April 2001, establishing the International Organisation of Vine and Wine,

FOLLOWING a proposal made by the Methods of Analysis Sub-commission,

CONSIDERING the method relating to the determination of the density and specific gravity at 20°C (METHOD OIV-MA-AS2-01A) of wine updated in 2009,

IN VIEW of the studies presented to the Methods of Analysis Sub-commission,

HAS DECIDED to: modify point 2, introduce the determination by electronic densimetry using an oscillating cell (point 5) and replace point 5 with point 6 in type I analysis method AS2-01A, included in Appendix A of the Compendium of International Methods of Analysis of Wine and Musts, as follows:

*the original language from which this text was translated is: FR

Title

Type of method

Density and specific gravity at 20°c (method OIV-MA-AS2-01A

I

2. Principle

The density and specific gravity at 20°C are determined on the sample under test:

A

by pycnometry, or

B

by electronic densimetry using an oscillating cell

C

or by densimetry with a hydrostatic balance

Note: For very accurate measurement, the density must be corrected for the presence of sulphur dioxide.

0.0006 x S

  =  the corrected density

= the observed density

S = total sulphur dioxide in g/l

5. Density at 20°C and specific gravity at 20°C measured by electronic densimetry using an oscillating cell

5.1. Principle

The density of the wine is measured by electronic densimetry using an oscillating cell.  The principle consists of measuring the oscillation frequency of a tube containing the sample and subjected to an electromagnetic field. The density is related to the oscillation frequency by the following equation:

(1)

= density of the sample

T = induced oscillation frequency

M = mass of the empty tube

C = spring constant

V = volume of the oscillated sample

This relationship is of the form: , there is therefore a linear relationship between the density and the square of the frequency. The constants A and B are specific for each oscillator and are estimated by measuring the period of fluids of known density.

5.2 Equipment

5.2.1. Electronic oscillating cell densimeter

The electronic densimeter consists of the following elements:

  • A measuring cell containing a measuring tube and a temperature controller,
  • A system for oscillating the tube and measuring the oscillation frequency,
  • A timer,
  • A digital display and if necessary a calculator.

The densimeter is placed on a perfectly stable support, isolated from all vibrations.

5.3. Reagents and materials

5.3.1 Reference fluids

Two reference fluids are used to adjust the densimeter. The densities of the reference fluids must include those of the wines to be measured. A difference in density between the reference fluids of more than 0.01000 g/ml is recommended. The density must be known with an uncertainty of less than +/- 0.00005 g/ml, at a temperature of 20.00 +/- 0.05°C.

The reference fluids used to measure the density of the wines by electronic densimetry are:

  • Dry air (uncontaminated),
  • Double distilled water, or water of equivalent analytical purity,
  • Aqueous-alcoholic solutions, or wines whose density has been determined by pycnometry,
  • Solutions connected to national standards with a viscosity of less than 2 /s.

5.3.2. Cleaning and drying products

  • detergents, acids, etc.
  • organic solvents: ethanol 96%  vol., pure acetone, etc.

5.4. Equipment inspection and calibration

5.4.1 Temperature control of measuring cell

The measuring tube is located in a temperature-controlled device. The variation in temperature must be less than +/- 0.02°C.

When provided as a feature by the densimeter, the temperature of the measuring cell must be controlled since it has a significant impact on the results of the determinations. The density of an aqueous-alcoholic  solution with an alcoholic strength by volume (ASV) of 10% vol. is 0.98471 g/ml at 20°C and 0.98447 g/ml at 21°C, i.e. a difference of 0.00024 g/ml.

The test temperature is 20°C. The cell temperature is measured with a thermometer that offers a resolution of less than 0.01°C and connected to national standards. It must ensure that the temperature is measured with an uncertainty of less than +/- 0.07°C.

5.4.2 Equipment  calibration

The equipment must be calibrated before being used for the first time, then every six months or if the verification is unsatisfactory. The objective is to use two reference fluids to calculate the constants A and B (cf. (2)). For details about the calibration refer to the instructions for the equipment. In principle, this calibration is carried out using dry air (taking atmospheric pressure into consideration) and very pure water (double-distilled and/or microfiltered with a very high resistivity, e.g. > 18 M.cm).

5.4.3 Verifying the calibration

The calibration is verified by measuring the density of the reference fluids.

  • An air density verification is performed every day. A difference between the theoretical and measured density of more than 0.00008 g/ml may indicate that the tube is soiled. It must then be cleaned. After cleaning, the air density is verified again, and if this verification does not comply then the equipment must be adjusted.
  • The density of water must also be verified; if the difference between the theoretical and measured density is greater than 0.00008 g/ml then the apparatus must be adjusted.
  • If the verification of the cell temperature is problematic then the density of a hydroalcoholic solution whose density is comparable with those of the wines analysed can be checked directly.

5.4.4 Checks

When the difference between the theoretical density of a reference solution (known with an uncertainty of +/- 0.00005 g/ml) and the measured density is greater than 0.00008 g/ml then the calibration of the device must be checked.

5.5. Procedure

The operator must ensure that the temperature of the measuring cell is stable. The wine in the densimeter cell must not contain bubbles of gas and must be homogeneous. If an internal light can be used to check for the absence of bubbles, extinguish it quickly after performing the check since the heat generated by the lamp has an impact on the measured temperature.

If the equipment only gives the frequency, the density is calculated using the constants A and B (refer to the instructions for the equipment).

5.6 Precision parameters for the density measuring method using an oscillating cell

n

3800

min

0.99187

max

1.01233

r

0.00011

r%

0.011

sr

0.000038

R

0.00025

sR

0.000091

R%

0.025

Key:

  • n: number of values selected
  • min: lower limit of range of measurement
  • max: upper limit of range of measurement
  • r: repeatability
  • : Repeatability standard deviation
  • r%: Relative repeatability (sr x 100 / mean value)
  • R: reproducibility
  • : Reproducibility standard deviation
  • R%: Relative reproducibility (sR x 100 / mean value)

6. Density at 20°C and specific gravity at 20°C measured using the hydrostatic balance

6.1 Principle

The density of wine may be measured by densimetry with a hydrostatic balance which relies on the phenomenon defined by Archimedes’ principle, namely that any object immersed in a fluid experiences an upwards force equal to the weight of the fluid displaced by the object.

6.2 Equipment and materials

Standard laboratory equipment, including:

6.2.1. Single-pan hydrostatic balance with a precision of 1 mg.

6.2.2. Float with a volume of at least 20 ml, specific to the balance, suspended by a thread with a diameter less than or equal to 0.1 mm.

6.2.3. Measuring cylinder with a level mark. The float must be capable of being completely contained in the volume below the mark; the surface of the liquid must be penetrated only by the supporting thread. The internal diameter of the measuring cylinder  must be at least 6 mm more than that of the float.

6.2.4. Thermometer (or temperature probe) with degree and tenth of a degree graduations, from 10 to 40°C, calibrated to ± 0.06°C.

6.2.5. Weights calibrated by a recognised certification body.

6.3 Reagents

Unless otherwise indicated, only use analytical quality reagents during the analysis with at least class 3 water corresponding to the definition given in standard ISO 3696:1987.

6.3.1. Washing solution for the float (sodium hydroxide, 30% m/v).

To prepare 100 ml of solution, dissolve 30 g of sodium hydroxide in ethanol 96% vol.

6.4. Procedure

After each measurement, the float and the  cylinder must be cleaned with distilled water, wiped with soft laboratory paper which does not shed its fibres and rinsed with the solution whose density is to be determined. The measurements must be performed when the equipment is stable so as to minimise alcohol loss through evaporation.

6.4.1. Balance calibration

Although balances usually have an internal calibration system, the hydrostatic balance must be calibrated with weights that are checked by an official certification body.

6.4.2. Float calibration

Fill the  cylinder up to the mark with double-distilled water (or with water of equivalent purity, e.g. microfiltered water with a conductivity of 18.2 M.cm), whose temperature must be between 15 and 25°C, and ideally at 20°C.

Immerse the float and the thermometer in the liquid, stir, read the density of the liquid indicated by the equipment, and, if necessary, adjust this reading such that it is equal to that of the water at the temperature at which the reading was taken.

6.4.3. Verification using a solution of known density

Fill the cylinder up to the mark with a solution of known density, whose temperature is between 15 and 25°C, and ideally at 20°C.

Immerse the float and the thermometer in the liquid, stir, read the density of the liquid indicated by the equipment and record the density and the temperature if the density is measured at t°C (ρ t)

6.4.4. If necessary, correct ρ using the table of densities ρ t for water-alcohol mixtures [Table II of Annex II of the OIV’s Compendium of international analysis methods].

The density determined in this way must be identical to the previously determined density.

Note: This solution of known density can be used instead of double-distilled water for the calibration of the float.

6.4.5. Measuring the density of a wine

Pour the sample under test into the cylinder up to the mark.

Immerse the float and the thermometer in the liquid, stir, read the density of the liquid indicated by the apparatus. Record the temperature if the density is measured at t°C (ρ t).

Correct ρ using the table of densities ρ t for water-alcohol mixtures [Table II of Annex II of the OIV's Compendium of international analysis methods].

6.4.6. Cleaning the float and the cylinder.

Immerse the float in the washing solution poured into the cylinder.

Leave to soak for one hour, rotating the float frequently.

Rinse thoroughly with tap water, then with distilled water.

Wipe with soft laboratory paper that does not shed fibres.

Perform these operations when the float is used for the first time, and then regularly as required.

6.5. Precision parameters for measuring the density using the hydrostatic balance

n

4347

min

0.99189

max

1.01229

r

0.00025

sr

0.000090

r%

0.025

R

0.00067

sR

0.00024

R%

0.067

Key:

  • n: number of values selected
  • min: lower limit of range of measurement 
  • max: upper limit of range of measurement
  • r: repeatability
  • : Repeatability standard deviation
  • r%: Relative repeatability (sr x 100 /mean value)
  • R: reproducibility
  • : Reproducibility standard deviation
  • R%: Relative reproducibility (sR x 100 /mean value)

6.6. Comparison of results for the density measuring methods using an oscillating cell or an hydrostatic balance

Using samples with a density between 0.992 and 1.012 g/ml repeatability and reproducibility were measured during an inter-laboratory ring test. The density of different samples as measured using the hydrostatic balance and the electronic densimeter and the repeatability and reproducibility values derived from an extensive multiannual inter-comparison exercise were compared.

6.6.1. Samples

Wines of different density and alcoholic strength prepared each month on an industrial scale, taken from a properly stored stock of bottles and delivered as anonymous products to the laboratories.

6.6.2. Laboratories

Laboratories participating in the monthly ring test organised by the Unione Italiana Vini (Verona, Italy) according to ISO 5725 (UNI 9225) rules and the International Protocol of Proficiency Testing for chemical analysis laboratories established by AOAC, ISO and IUPAC and ISO 43 and ILAC G13 guidelines. An annual report is supplied by this organisation to all participants.

6.6.3. Equipment

6.6.3.1. Electronic hydrostatic balance (accurate to 5 decimal places), if possible with a data processing device:

6.6.3.2. Electronic densimeter, if possible with autosampler.

6.6.4. Analysis

According to the rules for the validation of methods, each sample was analysed twice consecutively to determine the alcoholic strength.

6.6.5. Result

Table 1 shows the results of the measurements obtained by the laboratories using the hydrostatic balance.

Table 2 shows the results obtained by the laboratories using an electronic densimeter.

6.6.6. Evaluations of the results

6.6.6.1. The trial results were examined for evidence of individual systematic error (p < 0,025) using Cochran's and Grubb's tests successively, by procedures described in the internationally agreed Protocol for the Design, Conduct and Interpretation of Method-Performance Studies.

6.6.6.2. Repeatability (r) and reproducibility (R)

Calculations for repeatability (r) and reproducibility (R) as defined by that protocol were carried out on those results remaining after the removal of outliers. When assessing a new method there is often no validated reference or statutory method with which to compare precision criteria, hence it is useful to compare the precision data obtained from a collaborative trial with 'predicted' levels of precision. These 'predicted' levels are calculated from the Horwitz equation. Comparison of the trial results and the predicted levels give an indication as to whether the method is sufficiently precise for the level of analyte being measured. The Horwitz predicted value is calculated from the Horwitz equation.

where C = measured concentration of analyte expressed as a decimal (e.g. 1 g/100 g = 0.01).

The Horrat value gives a comparison of the actual precision measured with the precision predicted by the Horwitz equation for a method measuring at that particular level of analyte. It is calculated as follows:

HoR = RSDR(measured)/RSDR(Horwitz )

6.6.6.3. Interlaboratory precision

A Horrat value of 1 usually indicates satisfactory inter-laboratory precision, whereas a value of 2 usually indicates unsatisfactory precision, i.e. one that is too variable for most analytical purposes or where the variation obtained is greater than that expected for the type of method employed. Hor is also calculated, and used to assess intra-laboratory precision, using the following approximation:

RSDr(Horwitz) = 0,66 RSDR(Horwitz) (this assumes the approximation r = 0,66 R).

Table 3 shows the differences between the measurements obtained by laboratories using electronic densimetry and those using a hydrostatic balance.

6.6.6.4. Precision parameters

Table 4 shows the average overall precision parameters computed from all monthly trials carried out from January 2008 until December 2010.


Table 1: Hydrostatic balance (HB)

Sample

Mean

Total values

Values selected

repeatability

sr

RSDr

Hor

Reproducibility

sR

RSDRcalc

HoR

n replies

CrD95

 01/08

0,995491

130

120

0,0001701

0,0000607

0,0061016

0,0046193

0,0005979

0,0002135

0,0214502

0,0107178

2

0,0004141

 02/08

1,011475

146

125

0,0004714

0,0001684

0,0166457

0,0126320

0,0008705

0,0003109

0,0307366

0,0153947

2

0,0005686

 03/08

0,992473

174

161

0,0001470

0,0000525

0,0052898

0,0040029

0,0004311

0,0001540

0,0155140

0,0077482

2

0,0002959

 04/08

0,993147

172

155

0,0002761

0,0000986

0,0099274

0,0075130

0,0005446

0,0001945

0,0195839

0,0097818

2

0,0003595

 05/08

1,004836

150

138

0,0001882

0,0000672

0,0066905

0,0050723

0,0007495

0,0002677

0,0266373

0,0133283

2

0,0005215

 06/08

0,993992

152

136

0,0001486

0,0000531

0,0053391

0,0040411

0,0005302

0,0001894

0,0190506

0,0095167

2

0,0003675

 07/08

0,992447

162

150

0,0002660

0,0000950

0,0095709

0,0072424

0,0006046

0,0002159

0,0217575

0,0108664

2

0,0004063

 08/08

0,992210

162

151

0,0002619

0,0000935

0,0094281

0,0071341

0,0006309

0,0002253

0,0227108

0,0113420

2

0,0004265

 09/08

1,002600

148

131

0,0001093

0,0000390

0,0038920

0,0029496

0,0007000

0,0002500

0,0249341

0,0124719

2

0,0004919

 10/08

0,994482

174

152

0,0001228

0,0000439

0,0044105

0,0033385

0,0004250

0,0001518

0,0152645

0,0076259

2

0,0002942

 11/08

0,992010

136

125

0,0000909

0,0000325

0,0032742

0,0024775

0,0004256

0,0001520

0,0153217

0,0076516

2

0,0002975

 01/09

0,994184

174

152

0,0001655

0,0000591

0,0059435

0,0044987

0,0005439

0,0001942

0,0195384

0,0097606

2

0,0003756

 02/09

0,992266

118

101

0,0001742

0,0000622

0,0062682

0,0047431

0,0005210

0,0001861

0,0187534

0,0093658

2

0,0003580

 03/09

0,991886

164

135

0,0001850

0,0000661

0,0066603

0,0050395

0,0004781

0,0001707

0,0172136

0,0085963

2

0,0003251

 04/09

0,993632

180

150

0,0001523

0,0000544

0,0054754

0,0041440

0,0004270

0,0001525

0,0153476

0,0076664

2

0,0002922

 05/09

1,011061

116

100

0,0003659

0,0001307

0,0129234

0,0098067

0,0008338

0,0002978

0,0294527

0,0147508

2

0,0005605

 06/09

0,992063

114

105

0,0002923

0,0001044

0,0105238

0,0079631

0,0005257

0,0001877

0,0189240

0,0094507

2

0,0003418

 07/09

0,992708

172

155

0,0002892

0,0001033

0,0104040

0,0078732

0,0006156

0,0002199

0,0221478

0,0110617

2

0,0004106

 08/09

0,993064

136

127

0,0002926

0,0001045

0,0105224

0,0079632

0,0007520

0,0002686

0,0270446

0,0135081

2

0,0005112

 09/09

1,005285

118

110

0,0002946

0,0001052

0,0104661

0,0079352

0,0007226

0,0002581

0,0256704

0,0128454

2

0,0004892

 10/09

0,992905

150

132

0,0002234

0,0000798

0,0080358

0,0060812

0,0004498

0,0001607

0,0161803

0,0080815

2

0,0002978

 11/09

0,994016

142

127

0,0001896

0,0000677

0,0068114

0,0051555

0,0004739

0,0001693

0,0170278

0,0085062

2

0,0003214

 01/10

0,994734

170

152

0,0002125

0,0000759

0,0076288

0,0057748

0,0005406

0,0001931

0,0194104

0,0096975

2

0,0003672

 02/10

0,993177

120

110

0,0002210

0,0000789

0,0079467

0,0060140

0,0005800

0,0002071

0,0208565

0,0104175

2

0,0003950

 03/10

0,992799

148

136

0,0002277

0,0000813

0,0081923

0,0061995

0,0015157

0,0005413

0,0545262

0,0272335

2

0,0010657

 04/10

0,995420

172

157

0,0002644

0,0000944

0,0094866

0,0071819

0,0006286

0,0002245

0,0225542

0,0112693

2

0,0004244

 05/10

1,002963

120

108

0,0007086

0,0002531

0,0252330

0,0191244

0,0013667

0,0004881

0,0486677

0,0243447

2

0,0008991

 06/10

0,992546

120

113

0,0001737

0,0000620

0,0062506

0,0047300

0,0005435

0,0001941

0,0195567

0,0097673

2

0,0003744

 07/10

0,992831

174

152

0,0003003

0,0001073

0,0108031

0,0081753

0,0006976

0,0002492

0,0250959

0,0125344

2

0,0004699

 08/10

0,993184

144

130

0,0001799

0,0000642

0,0064674

0,0048945

0,0005951

0,0002125

0,0213984

0,0106882

2

0,0004111

09/10

1,012293

114

103

0,0002265

0,0000809

0,0079907

0,0060647

0,0014586

0,0005209

0,0514596

0,0257772

2

0,0010251

 10/10

0,992289

154

136

0,0006386

0,0002281

0,0229860

0,0173933

0,0007033

0,0002512

0,0253124

0,0126415

2

0,0003812

 11/10

0,994649

130

112

0,0002902

0,0001036

0,0104200

0,0078876

0,0005287

0,0001888

0,0189830

0,0094838

2

0,0003445

Table 2: Electronic densimetry (ED)

Sample

Mean

Total values

Values selected

repeatability

sr

RSDr

Hor

Reproducibility

sR

RSDRcalc

HoR

n replies

CrD95

 01/08

0,995504

114

108

0,0000755

0,0000270

0,0027085

0,0020505

0,0001571

0,0000561

0,0056361

0,0028162

2

0,0001045

 02/08

1,011493

132

125

0,0001921

0,0000686

0,0067837

0,0051480

0,0004435

0,0001584

0,0156582

0,0078426

2

0,0002985

 03/08

0,992491

138

118

0,0000746

0,0000266

0,0026830

0,0020303

0,0002745

0,0000980

0,0098776

0,0049332

2

0,0001905

 04/08

0,993129

132

120

0,0001230

0,0000439

0,0044247

0,0033486

0,0002863

0,0001023

0,0102965

0,0051429

2

0,0001929

 05/08

1,004892

136

116

0,0000926

0,0000331

0,0032893

0,0024937

0,0004777

0,0001706

0,0169785

0,0084955

2

0,0003346

 06/08

0,994063

142

123

0,0000558

0,0000199

0,0020051

0,0015177

0,0001776

0,0000634

0,0063791

0,0031867

2

0,0001224

 07/08

0,992498

136

125

0,0000822

0,0000294

0,0029576

0,0022381

0,0002094

0,0000748

0,0075368

0,0037641

2

0,0001423

 08/08

0,992270

130

115

0,0000515

0,0000184

0,0018537

0,0014027

0,0001665

0,0000595

0,0059940

0,0029935

2

0,0001149

 09/08

1,002603

136

121

0,0000821

0,0000293

0,0029236

0,0022157

0,0003328

0,0001189

0,0118565

0,0059306

2

0,0002318

 10/08

0,994493

128

117

0,0000667

0,0000238

0,0023954

0,0018132

0,0001429

0,0000510

0,0051309

0,0025633

2

0,0000954

 11/08

0,992017

118

104

0,0000842

0,0000301

0,0030309

0,0022933

0,0001962

0,0000701

0,0070644

0,0035279

2

0,0001322

 01/09

0,994216

148

131

0,0000830

0,0000297

0,0029832

0,0022580

0,0001551

0,0000554

0,0055712

0,0027832

2

0,0001015

 02/09

0,992251

104

88

0,0000947

0,0000338

0,0034097

0,0025801

0,0002846

0,0001017

0,0102451

0,0051165

2

0,0001956

 03/09

0,991875

126

108

0,0001271

0,0000454

0,0045777

0,0034637

0,0002067

0,0000738

0,0074421

0,0037165

2

0,0001316

 04/09

0,993654

134

114

0,0001166

0,0000416

0,0041899

0,0031711

0,0002043

0,0000730

0,0073417

0,0036673

2

0,0001322

 05/09

1,011035

128

104

0,0002388

0,0000853

0,0084361

0,0064016

0,0003554

0,0001269

0,0125542

0,0062875

2

0,0002211

 06/09

0,992104

116

106

0,0001005

0,0000359

0,0036178

0,0027375

0,0003169

0,0001132

0,0114088

0,0056976

2

0,0002184

 07/09

0,992720

144

140

0,0001579

0,0000564

0,0056815

0,0042995

0,0002916

0,0001042

0,0104923

0,0052404

2

0,0001905

 08/09

0,993139

110

102

0,0001175

0,0000420

0,0042242

0,0031969

0,0003603

0,0001287

0,0129577

0,0064721

2

0,0002479

 09/09

1,005276

112

108

0,0001100

0,0000393

0,0039070

0,0029622

0,0003522

0,0001258

0,0125134

0,0062617

2

0,0002429

 10/09

0,992912

122

111

0,0000705

0,0000252

0,0025365

0,0019195

0,0002122

0,0000758

0,0076315

0,0038117

2

0,0001458

 11/09

0,994031

128

118

0,0000718

0,0000256

0,0025784

0,0019516

0,0001639

0,0000585

0,0058883

0,0029415

2

0,0001102

 01/10

0,994752

144

136

0,0000773

0,0000276

0,0027765

0,0021017

0,0001787

0,0000638

0,0064144

0,0032046

2

0,0001203

 02/10

0,993181

108

98

0,0001471

0,0000525

0,0052893

0,0040029

0,0001693

0,0000605

0,0060884

0,0030410

2

0,0000945

 03/10

0,992665

140

127

0,0001714

0,0000612

0,0061683

0,0046678

0,0002378

0,0000849

0,0085559

0,0042732

2

0,0001447

04/10

0,995502

142

128

0,0001175

0,0000419

0,0042138

0,0031901

0,0002320

0,0000829

0,0083248

0,0041596

2

0,0001532

 05/10

1,002851

130

119

0,0001195

0,0000427

0,0042555

0,0032253

0,0002971

0,0001061

0,0105815

0,0052930

2

0,0002014

 06/10

0,992607

106

99

0,0001228

0,0000438

0,0044172

0,0033427

0,0002226

0,0000795

0,0080092

0,0040001

2

0,0001449

 07/10

0,992871

160

150

0,0001438

0,0000513

0,0051712

0,0039134

0,0003732

0,0001333

0,0134258

0,0067057

2

0,0002539

 08/10

0,993235

104

93

0,0000895

0,0000320

0,0032182

0,0024356

0,0002458

0,0000878

0,0088399

0,0044154

2

0,0001680

 09/10

1,012328

112

105

0,0000870

0,0000311

0,0030692

0,0023295

0,0003395

0,0001213

0,0119781

0,0060001

2

0,0002361

 10/10

0,992308

128

115

0,0000606

0,0000216

0,0021811

0,0016504

0,0001635

0,0000584

0,0058845

0,0029388

2

0,0001116

 11/10

0,994683

120

108

0,0001127

0,0000402

0,0040450

0,0030620

0,0001597

0,0000570

0,0057339

0,0028647

2

0,0000979


Table 3: Comparison of results between hydrostatic balance (HB) and electronic densimetry (DE)

Density - Hydrostatic balance

Density - Oscillating cell

Comparision

Sample

Mean value

Total values

Selected values

Sample

Mean value

Total values

Selected values

Δ(Bi-DE)

 01/08

0,995491

130

120

 01/08

0,995504

114

108

-0,000013

 02/08

1,011475

146

125

 02/08

1,011493

132

125

-0,000018

 03/08

0,992473

174

161

 03/08

0,992491

138

118

-0,000018

 04/08

0,993147

172

155

 04/08

0,993129

132

120

0,000018

 05/08

1,004836

150

138

 05/08

1,004892

136

116

-0,000056

 06/08

0,993992

152

136

 06/08

0,994063

142

123

-0,000071

 07/08

0,992447

162

150

 07/08

0,992498

136

125

-0,000051

 08/08

0,992210

162

151

 08/08

0,992270

130

115

-0,000060

 09/08

1,002600

148

131

 09/08

1,002603

136

121

-0,000003

 10/08

0,994482

174

152

 10/08

0,994493

128

117

-0,000011

 11/08

0,992010

136

125

 11/08

0,992017

118

104

-0,000007

 01/09

0,994184

174

152

 01/09

0,994216

148

131

-0,000031

 02/09

0,992266

118

101

 02/09

0,992251

104

88

0,000015

 03/09

0,991886

164

135

 03/09

0,991875

126

108

0,000011

 04/09

0,993632

180

150

 04/09

0,993654

134

114

-0,000022

 05/09

1,011061

116

100

 05/09

1,011035

128

104

0,000026

 06/09

0,992063

114

105

 06/09

0,992104

116

106

-0,000041

 07/09

0,992708

172

155

 07/09

0,992720

144

140

-0,000012

 08/09

0,993064

136

127

 08/09

0,993139

110

102

-0,000075

 09/09

1,005285

118

110

 09/09

1,005276

112

108

0,000009

 10/09

0,992905

150

132

 10/09

0,992912

122

111

-0,000008

 11/09

0,994016

142

127

 11/09

0,994031

128

118

-0,000015

 01/10

0,994734

170

152

 01/10

0,994752

144

136

-0,000018

 02/10

0,993177

120

110

 02/10

0,993181

108

98

-0,000005

 03/10

0,992799

148

136

 03/10

0,992665

140

127

0,000134

 04/10

0,995420

172

157

 04/10

0,995502

142

128

-0,000082

 05/10

1,002963

120

108

 05/10

1,002851

130

119

0,000112

 06/10

0,992546

120

113

 06/10

0,992607

106

99

-0,000061

 07/10

0,992831

174

152

 07/10

0,992871

160

150

-0,000040

 08/10

0,993184

144

130

 08/10

0,993235

104

93

-0,000052

 09/10

1,012293

114

103

 09/10

1,012328

112

105

-0,000035

 10/10

0,992289

154

136

 10/10

0,992308

128

115

-0,000019

 11/10

0,994649

130

112

 11/10

0,994683

120

108

-0,000035

average

Δ(Bi-DE)

-0,0000162

Std. dev.

Δ(Bi-DE)

0,0000447

Table 4: Precision parameters

hydrostatic balance (HB)

electronic densimetry (DE)

n° selected values

4347

3800

min

0,99189

0,99187

max

1,01229

1,01233

R

0,00067

0,00025

sR

0,00024

0,000091

R%

0,067

0,025

r

0,00025

0,00011

sr

0,000090

0,000038

r%

0,025

0,011