Density and Specific Gravity at 20°C (Type-I-and-IV)
OIV-MA-AS2-01 Density and specific gravity at 20°C
Type I and IV methods
- Scope of application
This resolution is applicable for determining the density and specific gravity at 20 °C of wines and musts, using any of the following:
- Pycnometry: Type I Method,
- Electronic densimetry using a frequency oscillator: Type I Method,
- Densimetry using a hydrostatic balance: Type I Method,
- Hydrometry: Type IV Method.
- Definition
Density is the quotient of the mass of a certain volume of wine or must at 20 °C by this volume. It is expressed in g/cm3 and its symbol is ρ20°C.
The specific gravity is the ratio of the density of a substance to the density of a reference material. For the analysis of wine or must, it is typically expressed as the ratio of the density of the wine or must at 20 °C to the density of water at 20 °C. Its symbol is:
Note: It is possible to obtain the specific gravity from the density ρ20 at 20 °C:
ρ20 = 0.998203 x or = ρ20 /0.998203 (where 0.998203 is the density of water at 20 °C in g/ cm3)
- Principle of the methods
The principle of each method is detailed in the following parts:
Method A: Pycnometry
Method B: Electronic densimetry using a frequency oscillator
Method C: Densimetry using a hydrostatic balance
Method D: Hydrometry
Note: For very precise determinations, the density should be corrected to account for sulphur-dioxide action.
ρ20 (g/cm3)= ρ'20 - 0.0006 × S
ρ20 (g/cm3) = corrected density
ρ'20 (g/cm3) = observed density
S (g/L) = total sulphur dioxide
- Preliminary sample preparation
If the wine or must contains notable quantities of carbon dioxide, remove the grand majority by, for example, mixing 250 mL of sample in a 1000-mL vial, or by filtering under reduced pressure on 2 g of cotton placed in an extension tube, or by any other suitable method.
Method A: Density at 20 °C and specific gravity at 20 °C measured by pycnometry (Type method)
A.1. Principle
The density of the wine or must is measured for a specific temperature using a glass pycnometer. This comprises a flask of known capacity, onto which a hollow ground-glass stopper is fitted equipped with a capillary tube. When the flask is closed, the overflow rises in the capillary. The volumes of the flask and the capillary being known, the density is determined by weighing using precision balances before and after filling of the pycnometer.
A.2. Reagents and products
A.2.1. Type II water for analytical use (ISO 3696 standard), or of equivalent purity
A.2.2. Sodium chloride solution (2% m/v)
To prepare 1 litre, weigh out 20 g of sodium chloride and dissolve to volume in water.
A.3. Apparatus and materials
Current laboratory apparatus, including the following:
A.3.1. Pyrex-glass pycnometer of around 100 mL capacity with a removable thermometer, with ground-glass joint and 10th-of-a-degree graduations, from 10 °C to 30 °C. This thermometer should be calibrated (Fig. 1).
Any pycnometer of equivalent characteristics may be used.
|
FIGURE 1: Pycnometer and its tare bottle |
This pycnometer includes a side tube of 25 mm in length and an inside diameter of at most 1 mm, terminated by a ground-glass conical joint. This side tube may be capped by a 'reservoir stopper' composed of a ground-glass conical tube, terminated by a tapered joint. This stopper serves as an expansion chamber.
The two joints of the apparatus should be prepared with great care.
A.3.2. Tare bottle of the same external volume (to within 1 mL) as the pycnometer and with a mass equal to the mass of the pycnometer filled with a liquid of a density of 1.01 g/mL (sodium chloride solution at 2% m/v)
A.3.3. Thermally insulated jacket that fits the body of the pycnometer exactly.
A.3.4. Twin-pan balance accurate to the nearest 0.1 mg
or
single-plate balance accurate to the nearest 0.1 mg.
A.3.5. Masses calibrated by an accredited body
A.4. Procedure
A.4.1. Pycnometer calibration
The calibration of the pycnometer comprises the determination of the following characteristics:
- tare weight,
- volume at 20 °C,
- water mass at 20 °C.
- Using a twin-pan balance
Place the tare bottle on the left-hand pan and the clean, dry pycnometer with its 'reservoir stopper' on the right-hand pan. Balance them by placing weights of known mass on the pycnometer side: p grams.
Fill the pycnometer carefully with water (A.2.1) at room temperature and fit the thermometer.
Carefully wipe the pycnometer dry and place it in the thermally insulated jacket.
Shake by inverting the container until the thermometer's temperature reading is constant, accurately adjust the level to the upper rim of the side tube, wipe the side tube clean and fit the reservoir stopper.
Read the temperature, t °C, carefully and if necessary correct for any inaccuracies in the temperature scale.
Weigh the water-filled pycnometer, with the weight in grams, p', making up the equilibrium.
Calculations:
Tare of the empty pycnometer:
Tare weight = p + m where m (g) = mass of the air contained in the pycnometer
- m (g) = 0.0012 (p - p’)
Volume at 20 °C in mL:
- (mL) = (p + m - p') x
= factor for temperature, t°C, taken from Table I
should be known to ± 0.001 mL
Water mass at 20 °C:
- (g) = x 0.998203
- 0.998203 (g/cm3) = water density at 20 °C
- Using a single-pan balance
Determine:
- the mass of the clean, dry pycnometer: P,
- the mass of the water-filled pycnometer at t °C: P1 following the instructions outlined in A.4.1.1,
- the mass of the tare bottle, .
Calculations:
Tare of the empty pycnometer:
Tare weight: P – m where m (g) = mass of the air contained in the pycnometer
- m (g) = 0.0012 ( - P)
Volume at 20 °C in mL:
- (mL) = [P1 ‑ (P ‑ m)] x
= factor for temperature, t°C, taken from Table I
should be known to 0.001 mL
Water mass at 20°C:
- (g) = x 0.998203
- 0.998203 = water density at 20 °C ( g/cm3)
A.4.2. Determination of the density:
A.4.2.1. Using a twin-pan balance
Weigh the pycnometer filled with the test sample following the instructions outlined in A.4.1.1.
Where p" represents the mass in grams that makes up the equilibrium at t°C,
taking into account that the liquid mass contained in the pycnometer = p + m - p", the apparent density at t°C, in g/cm3, is given by the following equation:
Calculate the density at 20 °C using one of the following correction tables in Annex I, according to the nature of the liquid to be analysed and the type ofpycnometer to be used: dry wine and dealcoholized wine (Table II or V), natural or concentrated must (Table III or VI), or liqueur wine (Table IV or VII).
A.4.2.2. Using a single-pan balance
Weigh the tare bottle, where T1 is its mass in g.
Calculate dT =
Mass of the empty pycnometer at the time of measurement = P - m + dT in g
Weigh the pycnometer filled with the test sample following the instructions outlined in A.4.1.1.
Where P2 represents its mass at t°C,
the liquid mass contained in the pycnometer at t°C = (P - m + dT) in g
and the apparent density at °C, in g/cm3, is as follows
Calculate the density at 20°C of the liquid to be analysed: dry wine, natural or concentrated must, or liqueur wine, as indicated in A.4.2.1.
A.5. Expression of results
The density is expressed in g/cm3 to 5 decimal places.
A.6. Precision
A.6.1. Repeatability in terms of density:
- for dry and sweet wines, except liqueur wines: r = 0.00010 g/cm3,
- for liqueur wines: r = 0.00018 g/ cm3.
- Reproducibility in terms of density:
- for dry and sweet wines, except liqueur wines: R = 0.00037 g/cm3,
- for liqueur wines: R = 0.00045 g/cm3.
A.7. Numerical example
A.7.1. Measurement by pycnometer on a twin-pan balance
A/Calibration of the pycnometer
1. Weighing of the clean, dry pycnometer:
- Tare = pycnometer + p
- ρ = 104.9454 g
2. Weighing of the water-filled pycnometer at the temperature t°C:
- Tare = pycnometer + water + p'
- p' = 1.2396 g for t = 20.5 °C
3. Calculation of the mass of the air contained in the pycnometer:
- m = 0.0012 (p ‑ p’)
- m = 0.0012 (104.9454 – 1.2396)
- m = 0.1244
4.Parameters to be kept:
- Tare of the empty pycnometer: p + m
- p + m = 104.9454 + 0.1244
- p + m = 105.0698 g
- Volume at 20 °C = (p + m ‑ p') x
- = 1.001900
- = (105.0698 – 1.2396) x 1.001900
- = 104.0275 mL
- Water mass at 20°C = x 0.998203
- = 103.8405 g
B/ Determination of the density at 20°C and the 20°C/20°C specific gravity of a dry wine:
p' = 1.2622 g at 17.80 °C
- ρ17.80 °C = 0.99788 g/cm3
Table II makes it possible to calculate ρ20 °C from ρt °C using the following formula:
For t = 17.80 °C and for an alcoholic strength of 11% vol., c = 0.54:
A.7.1.2. Measurement by pycnometer on a single-pan balance
A/ Establishment of the pycnometer constants
1.Weighing of the clean, dry pycnometer:
- P = 67.7913 g
2. Weighing of the water-filled pycnometer at t°C:
- = 169.2715 g at 21.65°C
3.Calculation of the mass of the air contained in the pycnometer:
- m = 0.0012 (P1 ‑ P)
- m = 0.0012 x 101.4802
- m = 0.1218 g
4. Characteristics to be retained:
- Tare of the empty pycnometer: P – m
- P - m = 67.7913 – 0.1218
- P - m = 67.6695 g
- Volume at 20 °C = [P1 - (P - m)] x
- = 1.002140
- = (169.2715 – 67.6695) x 1.002140
- = 101.8194 mL
- Water mass at 20 °C: x 0.998203
- = 101.6364 g
- Mass of the tare bottle:
- = 171.9160 g
B/Determination of the density at 20 °C and 20 °C/20 °C specific gravity of a dry wine:
= 171.9178
dT = 171.9178 – 171.9160 = 0.0018 g
P - m + dT = 67.6695 + 0.0018 = 67.6713 g
= 169.2799 at 18°C
A.7.2. Measurement by pycnometer on a single-pan balance
A/ Establishment of the pycnometer constants
1. Weighing of the clean, dry pycnometer:
- P = 67.7913 g
2. Weighing of the water-filled pycnometer at t °C:
- = 169.2715 g at 21.65°C
3. Calculation of the mass of the air contained in the pycnometer:
- m = 0.0012 (P1 ‑ P)
- m = 0.0012 x 101.4802
- m = 0.1218 g
4. Characteristics to be retained:
- Tare of the empty pycnometer: P – m
- P - m = 67.7913 – 0.1218
- P - m = 67.6695 g
- Volume at 20 °C = [P1 - (P - m)] x
- = 1.002140
- = (169.2715 – 67.6695) x 1.002140
- = 101.8194 mL
- Water mass at 20°C: x 0.998203
- M20 °C = 101.6364 g
- Mass of the tare bottle:
- = 171.9160 g
B/ Determination of the density at 20 °C and 20 °C/20 °C specific gravity of a dry wine:
- = 171.9178
- dT = 171.9178 – 171.9160 = 0.0018 g
- P - m + dT = 67.6695 + 0.0018 = 67.6713 g
- = 169.2799 at 18°C
Method B:Density at 20 °C and specific gravity at 20 °C measured by electronic densimetry using a frequency oscillator (Type I method)
B.1. Principle
The density of the wine or must is measured by electronic densimetry using a frequency oscillator. The principle consists of measuring the period of oscillation of a tube containing the sample undergoing electromagnetic stimulation. The density is related to the period of oscillation by the following formula:
ρ = density of the sample
T = period of induced vibration
M = mass of empty tube
C = spring constant
V = volume of vibrating sample
This relationship is in the form ρ = A – B(2), so there is a linear relationship between the density and the period squared. The constants A and B are specific to each oscillator and are estimated by measuring the period of fluids of known density.
B.2. Reagents and products
B.2.1. Reference fluids
Two reference fluids are used to adjust the densimeter. The densities of the reference fluids should encompass the densities of the wines or musts to be analysed. A spread of greater than 0.01000 g/cm3 between the densities of the reference fluids is recommended.
The reference fluids used to measure the density of the wines or musts by electronic densimetry are as follows:
- dry air (unpolluted),
- Type II water for analytical usage (ISO standard 3696), or of equivalent analytical purity,
- hydro-alcoholic solutions, wines or musts whose densities have been determined by a different Type I method, for which the uncertainty does not exceed 0.00005 g/cm3 at the temperature of 20.00 0.05 °C,
- solutions calibrated with traceability to the International System of Units, with viscosities of less than 2 mm2/s, for which the uncertainty does not exceed 0.00005 g/cm3 at the temperature of 20.00 0.05 °C.
B.2.2. Cleaning and drying products
Use products that ensure the perfectly clean and dried state of the measuring cell, according to the residues and manufacturer’s indications. For example:
- detergents, acids, etc.,
- organic solvents: 96% vol. ethanol, pure acetone, etc.
B.3. Apparatus and equipment
B.3.1. Electronic densimeter with frequency oscillator
The electronic densimeter consists of the following elements:
- a measuring cell consisting of a measuring tube and a temperature controller,
- a system for setting up an oscillation tube and measuring the period of oscillation,
- a digital display and possibly a calculator,
- sample injector syringe, autosampler or other equivalent system.
The densimeter is placed on a perfectly stable support isolated from all vibrations.
B.3.2. Temperature control of the measuring cell
Locate the measuring tube in a temperature-controlled system. Temperature stability should be better than 0.02 °C.
It is necessary to control the temperature of the measuring cell when the densimeter makes this possible, because this strongly influences the determination results. The density of a hydro-alcoholic solution with an alcoholic strength by volume (ABV) of 10% vol. is 0.98471 g/cm3 at 20 °C and 0.98447 g/cm3 at 21 °C, equating to a spread of 0.00024 g/cm3.
The test temperature is 20 °C. Measure the cell temperature with a resolution thermometer accurate to less than 0.01 °C and with traceability to national standards. This should enable a temperature measurement with an uncertainty of better than 0.07 °C.
B.3.3. Calibration of the apparatus
The apparatus should be calibrated before using it for the first time, then periodically or if the verification is not satisfactory. The objective is to use two reference fluids to calculate the constants A and B [see formula (2), B.1]. To carry out the calibration in practice, refer to the user manual of the apparatus. In principle, this calibration is carried out with dry air (taking into account the atmospheric pressure) and very pure water (B.2.1).
B.3.4. Calibration verification
In order to verify the calibration, the density of the reference fluids is measured.
Every day of use, a density check of the air is carried out. A difference between the theoretical density and observed density of more than 0.00008 g/cm3 may indicate that the tube is clogged. In that case, it should be cleaned. After cleaning, verify the air density again. If the verification is not conclusive, adjust the apparatus.
Check the density of the water; if the difference between the theoretical density and the density observed is greater than 0.00008 g/cm3, adjust the apparatus.
If verification of the cell temperature is difficult, it is possible to directly check the density of a hydro-alcoholic solution of comparable density to those of the samples analysed.
B.3.5. Checks
When the difference between the theoretical density of the reference solution (known with an uncertainty of 0.00005 g/cm3) and the measured density is above 0.00008 g/cm3, the calibration of the apparatus should be checked.
B.4. Procedure
Before measuring, if necessary, clean and dry the cell with acetone or absolute alcohol and dry air. Rinse the cell with the sample.
Inject the sample into the cell (using a syringe, autosampler or other equivalent system) so that it is filled completely. While filling, check that all air bubbles have been removed. The sample should be homogenous and not contain any solid particles. Where necessary, filter to remove any suspended matter before analysis.
If there is a lighting system available that makes it possible to verify the absence of bubbles, turn it off quickly after checking because the heat generated by the lamp can influence the measuring temperature (for apparatus with a permanent lighting system, this statement is not applicable).
The operator should ensure that the temperature of the measuring cell is stable.
Once the reading has been stabilised, record the density, ρ20⁰C.
If the apparatus only provides the period, the density can be calculated from the A and B constants (refer to the instructions for the equipment or Annex I of the method OIV-MA-AS312-01A).
B.5. Expression of results
The density is expressed in g/cm3 to 5 decimal places.
B.6. Precision parameters
The precision parameters are detailed in Table 4 of Annex II.
Repeatability:
- r = 0.00011 g/cm3
Reproducibility:
- R = 0.00025 g/cm3
Method C: Density at 20 °C and specific gravity at 20 °C measured using a hydrostatic balance (Type I Method)
C.1. Principle
The density of wine or musts can be measured by densimetry with a hydrostatic balance following the Archimedes principle, by which any body immersed in a fluid experiences an upwards force equal to the weight of the displaced fluid.
C.2. Reagents and products
C.2.1. Type II water for analytical usage (ISO 3696 standard), or of equivalent purity
C.2.2. Floater-washing solution (sodium hydroxide, 30 % m/v)
To prepare a 100-mL solution weigh 30 g of sodium hydroxide and fill using 96% vol. ethanol.
C.3. Apparatus and materials
Normal laboratory apparatus, particularly:
C.3.1. Single-pan hydrostatic balance accurate to the nearest 1 mg
C.3.2. Floater with at least 20 mL volume, specifically adapted for the balance, suspended by a thread with a diameter of less than or equal to 0.1 mm
C.3.3. Cylindrical test tube with level indicator. The floater should be able to fit entirely within the test tube volume below the level indicator; only the hanging thread should break the surface of the liquid. The cylindrical test tube should have an inside diameter at least 6 mm greater than that of the floater.
C.3.4. Thermometer (or temperature-measurement probe) with degree and 10th-of-a-degree graduations, from 10°C to 40°C, calibrated to ± 0.06 °C
C.3.5. Masses calibrated by an accredited body.
C.4. Procedure
After each measurement, the floater and the test tube should be cleaned with distilled water, wiped with soft laboratory paper that does not lose its fibres and rinsed with solution whose density is to be determined. These measurements should be carried out once the apparatus has reached a stable level in order to limit alcohol loss through evaporation.
C.4.1. Calibration of the apparatus
C.4.1.1. Balance calibration
While balances usually have internal calibration systems, hydrostatic balances should be calibrated with weights with traceability to the International System of Units.
C.4.1.2. Floater calibration
Fill the cylindrical test tube up to the level indicator with water (C.2.1) whose temperature is between 15 °C and 25 °C, but preferably at 20°C.
Plunge the floater and the thermometer into the liquid, shake, note down the density on the apparatus and, if necessary, adjust the reading in order for it to be equal to that of the water at the measurement temperature.
C.4.1.3. Verification using a solution of known density
Fill the cylindrical test tube up to the level indicator with a solution of known density at a temperature of between 15°C and 25 °C, preferably at 20°C.
Immerse the floater and the thermometer in the liquid, stir, read the density of the liquid indicated by the apparatus and record the density and the temperature where the density is measured at t °C (ρt).
If necessary, correct ρusing a ρt density table of hydro-alcoholic mixtures (Table II in Annex I).
The density determined in this way should be identical to the previously determined density.
Note: This solution of known density can also replace water for floater calibration.
C.4.2. Determination of the density
Pour the test sample into the cylindrical test tube up to the level indicator.
Plunge the floater and the thermometer into the liquid, shake and note down the density on the apparatus. Note the temperature if the density is measured at t°C (ρt).
Correct ρt using a ρt density table of hydro-alcoholic mixtures (Table II in the Annex).
C.4.3. Cleaning of the floater and cylindrical test tube
Plunge the floater into the washing solution in the test tube.
Allow to soak for one hour while turning the floater regularly.
Rinse with tap water, then with distilled water.
Wipe with soft laboratory paper that does not lose its fibres.
Carry out these operations when the floater is used for the first time and then on a regular basis when necessary.
C.5. Expression of results
The density is expressed in g/cm3 to 5 decimal places.
C.6. Precision parameters
The precision parameters are detailed in Table 4 of Annex II.
- r = 0.00025 g/cm3
- R = 0.00067 g/cm3
Method D: Density measured by hydrometry (Type IV Method)
D.1. Principle
The density and specific gravity at 20 °C are determined for the test sample by hydrometry following the Archimedes principle. A weighted cylinder equipped with a graduated stem is more or less immersed into the liquid sample whose density is to be determined. The density of the liquid is read directly on the graduation of the stem at the level of the meniscus.
D.2. Apparatus
D.2.1. Hydrometer
Hydrometers should meet ISO requirements relating to their dimensions and graduations.
They should have a cylindrical body and a circular stem with a cross-section of at least 3 mm in diameter. For dry wines, they should be graduated in g/cm3 from 0.983 to 1.003, with graduation marks at every 0.001 and 0.0002 interval. All of the marks at 0.001 intervals should be separated from the next by at least 5 mm. For the measurement of the specific gravity of dealcoholized wines, liqueur wines and musts, a set of 5 hydrometers are to be used, graduated (in g/cm3) from 1.000-1.030; 1.030-1.060; 1.060-1.090; 1.090-1.120; 1.120-1.150. These hydrometers are to be graduated for density at 20 °C by marks and intervals of no greater than 0.001 and 0.0005, with all the marks at the 0.001 intervals being separated from the next by at least 3 mm.
These hydrometers should be graduated so that they can be read at ‘top of the meniscus’. The indication of the graduation in density at 20 °C or specific gravity at 20 °C, and of the reading at the top of the meniscus, is to be given either on the graduated scale, or on a strip of paper attached to the bulb.
This apparatus should be calibrated with traceability to the International System of Units.
D.2.2. Thermometer graduated to intervals of no greater than 0.5 °C, calibrated with traceability to the International System of Units.
D.2.3. Measuring cylinder with dimensions that allow for the immersion of the thermometer and the hydrometer without contact with the sides, held vertically.
D.3. Measurement method
Place 250mL of the test sample (4) in the measuring cylinder (D.2.3) and insert the hydrometer and thermometer. Stir the sample and wait 1 minute to allow temperature equilibration, then read the thermometer. Remove the thermometer and, after 1 minute of rest, read the apparent density at t°C on the stem of the hydrometer.
Correct the apparent density as read at t°C for the effect of the temperature, using the tables in Annex I applying to dry wines (Table V), natural and concentrated musts (Table VI) and liqueur wines (Table VII).
D.4. Expression of results
The density is expressed in g/cm3 to 4 decimal places
Annexes
Annex I Tables
TABLE I
F factors by which the mass of the water in the Pyrex pycnometer at t °C has to be multiplied to calculate the volume of the pycnometer at 20 °C
t oC |
F |
t oC |
F |
t oC |
F |
t oC |
F |
t oC |
F |
t oC |
F |
t oC |
F |
10.0 |
1.000398 |
13.0 |
1.000691 |
16.0 |
1.001097 |
19.0 |
1.001608 |
22.0 |
1.002215 |
25.0 |
1.002916 |
28.0 |
1.003704 |
.1 |
1.000406 |
.1 |
1.000703 |
.1 |
1.001113 |
.1 |
1.001627 |
.1 |
1.002238 |
.1 |
1.002941 |
.1 |
1.003731 |
.2 |
1.000414 |
.2 |
1.000714 |
.2 |
1.001128 |
.2 |
1.001646 |
.2 |
1.002260 |
.2 |
1.002966 |
.2 |
1.003759 |
.3 |
1.000422 |
.3 |
1.000726 |
.3 |
1.001144 |
.3 |
1.001665 |
.3 |
1.002282 |
.3 |
1.002990 |
.3 |
1.003797 |
.4 |
1.000430 |
.4 |
1.000738 |
.4 |
1.001159 |
.4 |
1.001684 |
.4 |
1.002304 |
.4 |
1.003015 |
.4 |
1.003815 |
10.5 |
1.000439 |
13.5 |
1.000752 |
16.5 |
1.001175 |
19.5 |
1.001703 |
22.5 |
1.002326 |
25.5 |
1.003041 |
28.5 |
1.003843 |
.6 |
1.000447 |
.6 |
1.000764 |
.6 |
1.001191 |
.6 |
1.001722 |
.6 |
1.002349 |
.6 |
1.003066 |
.6 |
1.003871 |
.7 |
1.000456 |
.7 |
1.000777 |
.7 |
1.001207 |
.7 |
1.001741 |
.7 |
1.002372 |
3 |
1.003092 |
.7 |
1.003899 |
.8 |
1.000465 |
.8 |
1.000789 |
.8 |
1.001223 |
.8 |
1.001761 |
.8 |
1.002394 |
.8 |
1.003117 |
.8 |
1.003928 |
.9 |
1.000474 |
.9 |
1.000803 |
.9 |
1.001239 |
9 |
1.001780 |
.9 |
1.002417 |
.9 |
1.003143 |
.9 |
1.003956 |
11.0 |
1.000483 |
14.0 |
1.000816 |
17.0 |
1.001257 |
20.0 |
1.001800 |
23.0 |
1.002439 |
26.0 |
1.003168 |
29.0 |
1.003984 |
.1 |
1.000492 |
.1 |
1.000829 |
.1 |
1.001273 |
.1 |
1.001819 |
.1 |
1.002462 |
.1 |
1.003194 |
.1 |
1.004013 |
.2 |
1.000501 |
.2 |
1.000842 |
.2 |
1.001286 |
.2 |
1.001839 |
.2 |
1.002485 |
1 |
1.003222 |
2 |
1.004042 |
3 |
1.000511 |
3 |
1.000855 |
3 |
1.001306 |
.3 |
1.001959 |
.3 |
1.002508 |
.3 |
1.003247 |
.3 |
1.004071 |
.4 |
1.000520 |
.4 |
1.000868 |
.4 |
1.001323 |
.4 |
1.001880 |
.4 |
1.002531 |
.4 |
1.003273 |
.4 |
1.004099 |
11.5 |
1.000530 |
14.5 |
1.000882 |
17.5 |
1.001340 |
20.5 |
1.001900 |
23.5 |
1.002555 |
26.5 |
1.003299 |
29.5 |
1.004128 |
.6 |
1.000540 |
.6 |
1.000895 |
.6 |
1.001357 |
.6 |
1.001920 |
.6 |
1.002578 |
.6 |
1.003326 |
.6 |
1.004158 |
.7 |
1.000550 |
.7 |
1.000909 |
.7 |
1.001374 |
.7 |
1.001941 |
3 |
1.002602 |
.7 |
1.003352 |
.7 |
1.004187 |
.8 |
1.000560 |
.8 |
1.000923 |
.8 |
1.001391 |
.8 |
1.001961 |
.8 |
1.002625 |
.8 |
1.003379 |
.8 |
1.004216 |
.9 |
1.000570 |
.9 |
1.000937 |
.9 |
1.001409 |
.9 |
1.001982 |
.9 |
1.002649 |
.9 |
1.003405 |
.9 |
1.004245 |
12.0 |
1.000580 |
15.0 |
1.000951 |
18.0 |
1.001427 |
21.0 |
1.002002 |
24.0 |
1.002672 |
27.0 |
1.003432 |
30.0 |
1.004275 |
.1 |
1.000591 |
.1 |
1.000965 |
.1 |
1.001445 |
.1 |
1.002023 |
.1 |
1.002696 |
.1 |
1.003459 |
||
.2 |
1.000601 |
.2 |
1.000979 |
.2 |
1.001462 |
.2 |
1.002044 |
.2 |
1.002720 |
.2 |
1.003485 |
||
.3 |
1.000612 |
.3 |
1.000993 |
.3 |
1.001480 |
.3 |
1.002065 |
.3 |
1.002745 |
.3 |
1.003513 |
||
.4 |
1.000623 |
.4 |
1.001008 |
.4 |
1.001498 |
.4 |
1.002086 |
.4 |
1.002769 |
.4 |
1.003540 |
||
12.5 |
1.000634 |
15.5 |
1.001022 |
18.5 |
1.001516 |
21.5 |
1.002107 |
24.5 |
1.002793 |
27.5 |
1.003567 |
||
.6 |
1.000645 |
.6 |
1.001037 |
.6 |
1.001534 |
.6 |
1.002129 |
.6 |
1.002817 |
.6 |
1.003594 |
||
.7 |
1.000656 |
.7 |
1.001052 |
.7 |
1.001552 |
.7 |
1.002151 |
.7 |
1.002842 |
.7 |
1.003621 |
||
.8 |
1.000668 |
.8 |
1.001067 |
.8 |
1.001570 |
.8 |
1.002172 |
.8 |
1.002866 |
.8 |
1.003649 |
||
.9 |
1.000679 |
.9 |
1.001082 |
.9 |
1.001589 |
.9 |
1.002194 |
.9 |
1.002891 |
.9 |
1.003676 |
TABLE II
Temperature corrections, c, required for the density of dry wines and dealcoholised wines,
measured using a Pyrex-glass pycnometer at °C, in order to correct to 20 °C.
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
|
Alcoholic strength |
||||||||||||||||||||||||
0 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
||
10 |
1.59 |
1.64 |
1.67 |
1.71 |
1.77 |
1.84 |
1.91 |
2.01 |
2.11 |
2.22 |
2.34 |
2.46 |
2.60 |
2.73 |
2.88 |
3.03 |
3.19 |
3.35 |
3.52 |
3.70 |
3.87 |
4.06 |
4.25 |
4.44 |
|
11 |
1.48 |
1.53 |
1.56 |
1.60 |
1.64 |
1.70 |
1.77 |
1.86 |
1.95 |
2.05 |
2.16 |
2.27 |
2.38 |
2.51 |
2.63 |
2.77 |
2.91 |
3.06 |
3.21 |
3.36 |
3.53 |
3.69 |
3.86 |
4.03 |
|
12 |
1.36 |
1.40 |
1.43 |
1.46 |
1.50 |
1.56 |
1.62 |
1.69 |
1.78 |
1.86 |
1.96 |
2.05 |
2.16 |
2.27 |
2.38 |
2.50 |
2.62 |
2.75 |
2.88 |
3.02 |
3.16 |
3.31 |
3.46 |
3.61 |
|
13 |
1.22 |
1.26 |
1.28 |
1.32 |
1.35 |
1.40 |
1.45 |
1.52 |
1.59 |
1.67 |
1.75 |
1.83 |
1.92 |
2.01 |
2.11 |
2.22 |
2.32 |
2.44 |
2.55 |
2.67 |
2.79 |
2.92 |
3.05 |
3.18 |
|
14 |
1.08 |
1.11 |
1.13 |
1.16 |
1.19 |
1.23 |
1.27 |
1.33 |
1.39 |
1.46 |
1.52 |
1.60 |
1.67 |
1.75 |
1.94 |
1.93 |
2.03 |
2.11 |
2.21 |
2.31 |
2.42 |
2.52 |
2.63 |
2.74. |
|
15 |
0.92 |
0.96 |
0.97 |
0.99 |
1.02 |
1.05 |
1.09 |
1.13 |
1.19 |
1.24 |
1.30 |
1.36 |
1.42 |
1.48 |
1.55 |
1.63 |
1.70 |
1.78 |
1.86 |
1.95 |
2.03 |
2.12 |
2.21 |
2.30 |
|
16 |
0.76 |
0.79 |
0.80 |
0.81 |
0.94 |
0.86 |
0.89 |
0.93 |
0.97 |
1.01 |
1.06 |
1.10 |
1.16 |
1.21 |
1.26 |
1.32 |
1.38 |
1.44 |
1.51 |
1.57 |
1.64 |
1.71 |
1.78 |
1.85 |
|
17 |
0.59 |
0.61 |
0.62 |
0.63 |
0.65 |
0.67 |
0.69 |
0.72 |
0.75 |
0.78 |
0.81 |
0.85 |
0.88 |
0.95 |
0.96 |
1.01 |
1.05 |
1.11 |
1.15 |
1.20 |
1.25 |
1.30 |
1.35 |
1.40 |
|
18 |
0.40 |
0.42 |
0.42 |
0.43 |
0.44 |
0.46 |
0.47 |
0.49 |
0.51 |
0.53 |
0.55 |
0.57 |
0.60 |
0.63 |
0.65 |
0.68 |
0.71 |
0.74 |
0.77 |
0.81 |
0.84 |
0.87 |
0.91 |
0.94 |
|
19 |
0.21 |
0.21 |
0.22 |
0.22 |
0.23 |
0.23 |
0.24 |
0.25 |
0.26 |
0.27 |
0.28 |
0.29 |
0.30 |
0.32 |
0.33 |
0.34 |
0.36 |
0.37 |
0.39 |
0.41 |
0.42 |
0.44 |
0.46 |
0.47 |
|
20 |
|||||||||||||||||||||||||
21 |
0.21 |
0.22 |
0.22 |
0.23 |
0.23 |
0.24 |
0.25 |
0.26 |
0.27 |
0.28 |
0.29 |
0.30 |
0.31 |
0.32 |
0.34 |
0.36 |
0.37 |
0.38 |
0.40 |
0.41 |
0.43 |
0.44 |
0.46 |
0.48 |
|
22 |
0.44 |
0.45 |
0.46 |
0.47 |
0.48 |
0.49 |
0.51 |
0.52 |
0.54 |
0.56 |
0.59 |
0.61 |
0.63 |
0.66 |
0.69 |
0.71 |
0.74 |
0.77 |
0.80 |
0.83 |
0.87 |
0.90 |
0.93 |
0.97 |
|
23 |
0.68 |
0.70 |
0.71 |
0.72 |
0.74 |
0.76 |
0.78 |
0.80 |
0.83 |
0.86 |
0.90 |
0.93 |
0.96 |
1.00 |
1.03 |
1.08 |
1.13 |
1.17 |
1.22 |
1.26 |
1.31 |
1.37 |
1.41 |
1.46 |
|
24 |
0.93 |
0.96 |
0.97 |
0.99 |
1.01 |
1.03 |
1.06 |
1.10 |
1.13 |
1.18 |
1.22 |
1.26 |
1.31 |
1.36 |
1.41 |
1.47 |
1.52 |
1.58 |
1.64 |
1.71 |
1.77 |
1.84 |
1.90 |
1.97 |
|
25 |
1.19 |
1.23 |
1.25 |
1.27 |
1.29 |
1.32 |
1.36 |
1.40 |
1.45 |
1.50 |
1.55 |
1.61 |
1.67 |
1.73 |
1.80 |
1.86 |
1.93 |
2.00 |
2.08 |
2.16 |
2.24 |
2.32 |
2.40 |
2.48 |
|
26 |
1.47 |
1.51 |
1.53 |
1.56 |
1.59 |
1.62 |
1.67 |
1.72 |
1.77 |
1.83 |
1.90 |
1.96 |
2.03 |
2.11 |
2.19 |
2.27 |
2.35 |
2.44 |
2.53 |
2.62 |
2.72 |
2.81 |
2.91 |
3.01 |
|
27 |
1.75 |
1.80 |
1.82 |
1.85 |
1.89 |
1.93 |
1.98 |
2.04 |
2.11 |
2.18 |
2.25 |
2.33 |
2.41 |
2.50 |
2.59 |
2.68 |
2.78 |
2.88 |
2.98 |
3.09 |
3.20 |
3.31 |
3.42 |
3.33 |
|
28 |
2.04 |
2.10 |
2.13 |
2.16 |
2.20 |
2.25 |
2.31 |
2.38 |
2.45 |
2.53 |
2.62 |
2.70 |
2.80 |
2.89 |
3.00 |
3.10 |
3.21 |
3.32 |
3.45 |
3.57 |
3.69 |
3.82 |
3.94 |
4.07 |
|
29 |
2.34 |
2.41 |
2.44 |
2.48 |
2.53 |
2.58 |
2.65 |
2.72 |
2.81 |
2.89 |
2.99 |
3.09 |
3.19 |
3.30 |
3.42 |
3.53 |
3.65 |
3.78 |
3.92 |
4.05 |
4.19 |
4.33 |
4.47 |
4.61 |
|
30 |
2.66 |
2.73 |
2.77 |
2.81 |
2.86 |
2.92 |
3.00 |
3.08 |
3.17 |
3.27 |
3.37 |
3.48 |
3.59 |
3.72 |
3.84 |
3.97 |
4.11 |
4.25 |
4.40 |
4.55 |
4.70 |
4.85 |
4.92 |
5.17 |
Note: This table can be used to convert the density to
TABLE III
Temperature corrections, c, required for the density of natural or concentrated musts,
measured using a Pyrex-glass pycnometer at t °C, in order to correct to 20 °C
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
Density |
|||||||||||||||||||||||
1.05 |
1.06 |
1.07 |
1.08 |
1.09 |
1.10 |
1.11 |
1.12 |
1.13 |
1.14 |
1.15 |
1.16 |
1.18 |
1.20 |
1.22 |
1.24 |
1.26 |
1.28 |
1.30 |
1.32 |
1.34 |
1.36 |
||
10 |
2.31 |
2.48 |
2.66 |
2.82 |
2.99 |
3.13 |
3.30 |
3.44 |
3.59 |
3.73 |
3.88 |
4.01 |
4.28 |
4.52 |
4.76 |
4.98 |
5.18 |
5.42 |
5.56 |
5.73 |
5.90 |
6.05 |
|
11 |
2.12 |
2.28 |
2.42 |
2.57 |
2.72 |
2.86 |
2.99 |
3.12 |
3.25 |
3.37 |
3.50 |
3.62 |
3.85 |
4.08 |
4.29 |
4148 |
4.67 |
4.84 |
5.00 |
5.16 |
5.31 |
5.45 |
|
12 |
1.92 |
2.06 |
2.19 |
2.32 |
2.45 |
2.58 |
2.70 |
2.92 |
2.94 |
3.04 |
3.15 |
3.26 |
3.47 |
3.67 |
3.85 |
4.03 |
4.20 |
4.36 |
4.51 |
4.65 |
478 |
4.91 |
|
13 |
1.72 |
1.84 |
1.95 |
2.06 |
2.17 |
2.27 |
2.38 |
2.48 |
2.58 |
2.69 |
2.78 |
2.89 |
3.05 |
3.22 |
3.39 |
3.55 |
3.65 |
3.84 |
3.98 |
4.11 |
4.24 |
4.36 |
|
14 |
1.52 |
1.62 |
1.72 |
1.81 |
1.90 |
2.00 |
2.09 |
2.17 |
2.26 |
2.34 |
2.43 |
2.51 |
2.66 |
2.82 |
2.96 |
3.09 |
3.22 |
3.34 |
3.45 |
3.56 |
3.67 |
3.76 |
|
15 |
1.28 |
1.36 |
1.44 |
1.52 |
1.60 |
1.67 |
1.75 |
1.82 |
1.89 |
1.96 |
2.04 |
2.11 |
2.24 |
2.36 |
2.48 |
2.59 |
2.69 |
2.79 |
2.88 |
2.97 |
3.03 |
3.10 |
|
16 |
1.05 |
1.12 |
1.18 |
1.25 |
1.31 |
1.37 |
1.43 |
1.49 |
1.55 |
1.60 |
1.66 |
1.71 |
1.81 |
1.90 |
2.00 |
2.08 |
2.16 |
2.24 |
2.30 |
2.37 |
2.43 |
2.49 |
|
17 |
0.80 |
0.86 |
0.90 |
0.95 |
1.00 |
1.04 |
1.09 |
1.13 |
1.18 |
1.22 |
1.26 |
1.30 |
1.37 |
1.44 |
1.51 |
1.57 |
1.62 |
1.68 |
1.72 |
1.76 |
1.80 |
1.84 |
|
18 |
0.56 |
0.59 |
0.62 |
0.66 |
0.68 |
0.72 |
0.75 |
0.77 |
0.80 |
0.83 |
0.85 |
0.88 |
0.93 |
0.98 |
1.02 |
1.05 |
1.09 |
1.12 |
1.16 |
1.19 |
1.21 |
1.24 |
|
19 |
0.29 |
0.31 |
0.32 |
0.34 |
0.36 |
0.37 |
0.39 |
0.40 |
0.42 |
0.43 |
0.44 |
0.45 |
0.48 |
0.50 |
0.52 |
0.54 |
0.56 |
0.57 |
0.59 |
0.60 |
0.61 |
0.62 |
|
20 |
|||||||||||||||||||||||
21 |
0.29 |
0.30 |
0.32 |
0.34 |
0.35 |
0.37 |
0.38 |
0.40 |
0.41 |
0.42 |
0.44 |
0.46 |
0.48 |
0.50 |
0.53 |
0.56 |
0.58 |
0.59 |
0.60 |
0.61 |
0.62 |
0.62 |
|
22 |
0.58 |
0.61 |
0.64 |
0.67 |
0.70 |
0.73 |
0.76 |
0.79 |
0.81 |
0.84 |
0.87 |
0.90 |
0.96 |
1.03 |
1.05 |
1.09 |
1.12 |
1.15 |
1.18 |
1.20 |
1.22 |
1.23 |
|
23 |
0.89 |
0.94 |
0.99 |
1.03 |
1.08 |
1.12 |
1.16 |
1.20 |
1.25 |
1.29 |
1.33 |
1.37 |
1.44 |
1.51 |
1.57 |
1.63 |
1.67 |
1.73 |
1.77 |
1.80 |
1.82 |
1.94 |
|
24 |
1.20 |
1.25 |
1.31 |
1.37 |
1.43 |
1.49 |
1.54 |
1.60 |
1.66 |
1.71 |
1.77 |
1.82 |
1.92 |
2.01 |
2.10 |
2.17 |
2.24 |
2.30 |
2.36 |
2.40 |
2.42 |
2.44 |
|
25 |
1.51 |
1.59 |
1.66 |
1.74 |
1.81 |
1.88 |
1.95 |
2.02 |
2.09 |
2.16 |
2.23 |
2.30 |
2.42 |
2.53 |
2.63 |
2.72 |
2.82 |
2.89 |
2.95 |
2.99 |
3.01 |
3.05 |
|
26 |
1.84 |
1.92 |
2.01 |
2.10 |
2.18 |
2.26 |
2.34 |
2.42 |
2.50 |
2.58 |
2.65 |
2.73 |
2.87 |
3.00 |
3.13 |
3.25 |
3.36 |
3.47 |
3.57 |
3.65 |
372 |
3.79 |
|
27 |
2.17 |
2.26 |
2.36 |
2.46 |
2.56 |
2.66 |
2.75 |
2.84 |
2.93 |
3.01 |
3.10 |
3.18 |
3.35 |
3.50 |
3.66 |
3.80 |
3.93 |
4.06 |
4.16 |
4.26 |
4.35 |
4.42 |
|
28 |
2.50 |
2.62 |
2.74 |
2.85 |
2.96 |
3.07 |
3.18 |
3.28 |
3.40 |
3.50 |
3.60 |
3.69 |
3.87 |
4.04 |
4.21 |
4.36 |
4.50 |
4.64 |
4.75 |
4.86 |
4.94 |
5.00 |
|
29 |
2.86 |
2.98 |
3.10 |
3.22 |
3.35 |
3.47 |
3.59 |
3.70 |
3.82 |
3.93 |
4.03 |
4.14 |
4.34 |
4.53 |
4.72 |
4.89 |
5.05 |
5.20 |
5.34 |
5.46 |
5.56 |
5.64 |
|
30 |
3.20 |
3.35 |
3.49 |
3.64 |
3.77 |
3.91 |
4.05 |
4.17 |
4.30 |
4.43 |
4.55 |
4.67 |
4.90 |
5.12 |
5.39 |
5.51 |
5.68 |
5.94 |
5.96 |
6.09 |
6.16 |
6.22 |
Note: This table can be used to convert the density to
Table IV
Temperature corrections, c, required for the density of liqueur wines, measured using a Pyrex-glass pycnometer at t °C, in order to correct to 20 °C
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
13% vol. wines |
15% vol. wines |
17% vol. wines |
|||||||||||||||||||
Density |
Density |
Density |
|||||||||||||||||||
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
|
10 |
2.36 |
2.71 |
3.06 |
3.42 |
3.72 |
3.96 |
4.32 |
2.64 |
2.99 |
3.36 |
3.68 |
3.99 |
4.30 |
4.59 |
2.94 |
3.29 |
3.64 |
3.98 |
4.29 |
4.60 |
4.89 |
11 |
2.17 |
2.49 |
2.80 |
2.99 |
3.39 |
3.65 |
3.90 |
2.42 |
2.73 |
3.05 |
3.34 |
3.63 |
3.89 |
4.15 |
2.69 |
3.00 |
3.32 |
3.61 |
3.90 |
4.16 |
4.41 |
12 |
1.97 |
2.25 |
2.53 |
2.79 |
3.05 |
3.29 |
3.52 |
2.19 |
2.47 |
2.75 |
3.01 |
3.27 |
3.51 |
3.73 |
2.42 |
2.70 |
2.98 |
3.24 |
3.50 |
3.74 |
3.96 |
13 |
1.78 |
2.02 |
2.25 |
2.47 |
2.69 |
2.89 |
3.09 |
1.97 |
2.21 |
2.44 |
2.66 |
2.87 |
3.08 |
3.29 |
2.18 |
2.42 |
2.64 |
2.87 |
3.08 |
3.29 |
3.49 |
14 |
1.57 |
1.78 |
1.98 |
2.16 |
2.35 |
2.53 |
2.70 |
1.74 |
1.94 |
2.14 |
2.32 |
2.52 |
2.69 |
2.86 |
1.91 |
2.11 |
2.31 |
2.50 |
2.69 |
2.86 |
3.03 |
15 |
1.32 |
1.49 |
1.66 |
1.82 |
1.97 |
2.12 |
2.26 |
1.46 |
1.63 |
1.79 |
1.95 |
2.10 |
2.25 |
2.39 |
1.60 |
1.77 |
1.93 |
2.09 |
2.24 |
2.39 |
2.53 |
16 |
1.08 |
1.22 |
1.36 |
1.48 |
1.61 |
1.73 |
1.84 |
1.18 |
1.32 |
1.46 |
1.59 |
1.71 |
1.83 |
1.94 |
1.30 |
1.44 |
1.58 |
1.71 |
1.83 |
1.95 |
2.06 |
17 |
0.83 |
0.94 |
1.04 |
1.13 |
1.22 |
1.31 |
1.40 |
0.91 |
1.02 |
1.12 |
1.21 |
1.30 |
1.39 |
1.48 |
1.00 |
1.10 |
1.20 |
1.30 |
1.39 |
1.48 |
1.56 |
18 |
0.58 |
0.64 |
0.71 |
0.78 |
0.84 |
0.89 |
0.95 |
0.63 |
0.69 |
0.76 |
0.83 |
0.89 |
0.94 |
1.00 |
0.69 |
0.75 |
0.82 |
0.89 |
0.95 |
1.00 |
1.06 |
19 |
0.30 |
0.34 |
0.37 |
0.40 |
0.43 |
0.46 |
0.49 |
0.33 |
0.37 |
0.40 |
0.43 |
0.46 |
0.49 |
0.52 |
0.36 |
0.39 |
0.42 |
0.46 |
0.49 |
0.52 |
0.54 |
20 |
|||||||||||||||||||||
21 |
0.30 |
0.33 |
0.36 |
0.40 |
0.43 |
0.46 |
0.49 |
0.33 |
0.36 |
0.39 |
0.43 |
0.46 |
0.49 |
0.51 |
0.35 |
0.39 |
0.42 |
0.45 |
0.48 |
0.51 |
0.54 |
22 |
0.60 |
0.67 |
0.73 |
0.80 |
0.85 |
0.91 |
0.98 |
0.65 |
0.72 |
0.78 |
0.84 |
0.90 |
0.96 |
1.01 |
0.71 |
0.78 |
0.84 |
0.90 |
0.96 |
1.01 |
1.07 |
23 |
0.93 |
1.02 |
1.12 |
1.22 |
1.30 |
1.39 |
1.49 |
1.01 |
1.10 |
1.20 |
1.29 |
1.38 |
1.46 |
1.55 |
1.10 |
1.19 |
1.29 |
1.38 |
1.46 |
1.55 |
1.63 |
24 |
1.27 |
1.39 |
1.50 |
1.61 |
1.74 |
1.84 |
1.95 |
1.37 |
1.49 |
1.59 |
1.72 |
1.84 |
1.95 |
2.06 |
1.48 |
1.60 |
1.71 |
1.83 |
1.95 |
2.06 |
2.17 |
25 |
1.61 |
1.75 |
1.90 |
2.05 |
2.19 |
2.33 |
2.47 |
1.73 |
1.87 |
2.02 |
2.17 |
2.31 |
2.45 |
2.59 |
1.87 |
2.01 |
2.16 |
2.31 |
2.45 |
2.59 |
2.73 |
26 |
1.94 |
2.12 |
2.29 |
2.47 |
2.63 |
2.79 |
2.95 |
2.09 |
2.27 |
2.44 |
2.62 |
2.78 |
2.94 |
3.10 |
2.26 |
2.44 |
2.61 |
2.79 |
2.95 |
3.11 |
3.26 |
27 |
2.30 |
2.51 |
2.70 |
2.90 |
3.09 |
3.27 |
3.44 |
2.48 |
2.68 |
2.87 |
3.07 |
3.27 |
3.45 |
3.62 |
2.67 |
2.88 |
3.07 |
3.27 |
3.46 |
3.64 |
3.81 |
28 |
2.66 |
2.90 |
3.13 |
3.35 |
3.57 |
3.86 |
4.00 |
2.86 |
3.10 |
3.23 |
3.55 |
3.77 |
3.99 |
4.20 |
3.08 |
3.31 |
3.55 |
3.76 |
3.99 |
4.21 |
4.41 |
29 |
3.05 |
3.31 |
3.56 |
3.79 |
4.04 |
4.27 |
4.49 |
3.28 |
3.53 |
3.77 |
4.02 |
4.26 |
4.49 |
4.71 |
3.52 |
3.77 |
4.01 |
4.26 |
4.50 |
4.73 |
4.95 |
30 |
3.44 |
3.70 |
3.99 |
4.28 |
4.54 |
4.80 |
5.06 |
3.68 |
3.94 |
4.23 |
4.52 |
4.79 |
5.05 |
5.30 |
3.95 |
4.22 |
4.51 |
4.79 |
5.07 |
5.32 |
5.57 |
TABLE IV (continued)
Temperature corrections, c, required for the density of liqueur wines, measured using a Pyrex-glass pycnometer at t °C, in order to correct to 20 °C
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
19% vol. wines |
21% vol. wines |
||||||||||||||||||||||||||
Density |
Density |
||||||||||||||||||||||||||
1.000 |
1.020 |
1.040 |
1.060 |
1.000 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
||||||||||||||
10 |
3.27 |
3.62 |
3.97 |
4.30 |
4.62 |
4.92 |
5.21 |
3.62 |
3.97 |
4.32 |
4.66 |
4.97 |
5.27 |
5.56 |
|||||||||||||
11 |
2.99 |
3.30 |
3.61 |
3.90 |
4.19 |
4.45 |
4.70 |
3.28 |
3.61 |
3.92 |
4.22 |
4.50 |
4.76 |
5.01 |
|||||||||||||
12 |
2.68 |
2.96 |
3.24 |
3.50 |
3.76 |
4.00 |
4.21 |
2.96 |
3.24 |
3.52 |
3.78 |
4.03 |
4.27 |
4.49 |
|||||||||||||
13 |
2.68 |
2.96 |
3.24 |
3.50 |
3.76 |
4.00 |
4.21 |
2.96 |
3.24 |
3.52 |
3.78 |
4.03 |
4.27 |
4.49 |
|||||||||||||
14 |
2.11 |
2.31 |
2.51 |
2.69 |
2.88 |
3.05 |
3.22 |
2.31 |
2.51 |
2.71 |
2.89 |
3.08 |
3.25 |
3.43 |
|||||||||||||
15 |
1.76 |
1.93 |
2.09 |
2.25 |
2.40 |
2.55 |
2.69 |
1.93 |
2.10 |
2.26 |
2.42 |
2.57 |
2.72 |
2.86 |
|||||||||||||
16 |
1.43 |
1.57 |
1.70 |
1.83 |
1.95 |
2.08 |
2.18 |
1.56 |
1.70 |
1.84 |
1.97 |
2.09 |
2.21 |
2.32 |
|||||||||||||
17 |
1.09 |
1.20 |
1.30 |
1.39 |
1.48 |
1.57 |
1.65 |
1.20 |
1.31 |
1.41 |
1.50 |
1.59 |
1.68 |
1.77 |
|||||||||||||
18 |
0.76 |
0.82 |
0.88 |
0.95 |
1.01 |
1.06 |
1.12 |
0.82 |
0.88 |
0.95 |
1.01 |
1.08 |
1.13 |
1.18 |
|||||||||||||
19 |
0.39 |
0.42 |
0.45 |
0.49 |
0.52 |
0.55 |
0.57 |
0.42 |
0.46 |
0.49 |
0.52 |
0.55 |
0.58 |
0.61 |
|||||||||||||
20 |
|||||||||||||||||||||||||||
21 |
0.38 |
0.42 |
0.45 |
0.48 |
0.51 |
0.54 |
0.57 |
0.41 |
0.45 |
0.48 |
0.51 |
0.54 |
0.57 |
0.60 |
|||||||||||||
22 |
0.78 |
0.84 |
0.90 |
0.96 |
1.02 |
1.07 |
1.13 |
0.84 |
0.90 |
0.96 |
1.02 |
1.08 |
1.14 |
1.19 |
|||||||||||||
23 |
1.19 |
1.28 |
1.38 |
1.47 |
1.55 |
1.64 |
1.72 |
1.29 |
1.39 |
1.48 |
1.57 |
1.65 |
1.74 |
1.82 |
|||||||||||||
24 |
1.60 |
1.72 |
1.83 |
1.95 |
2.06 |
2.18 |
2.29 |
1.73 |
1.85 |
1.96 |
2.08 |
2.19 |
2.31 |
2.42 |
|||||||||||||
25 |
2.02 |
2.16 |
2.31 |
2.46 |
2.60 |
2.74 |
2.88 |
2.18 |
2.32 |
2.47 |
2.62 |
2.76 |
2.90 |
3.04 |
|||||||||||||
26 |
2.44 |
2.62 |
2.79 |
2.96 |
3.12 |
3.28 |
3.43 |
2.53 |
2.81 |
2.97 |
3.15 |
3.31 |
3.47 |
3.62 |
|||||||||||||
27 |
2.88 |
3.08 |
3.27 |
3.42 |
3.66 |
3.84 |
4.01 |
3.10 |
3.30 |
3.47 |
3.69 |
3.88 |
4.06 |
4.23 |
|||||||||||||
28 |
3.31 |
3.54 |
3.78 |
4.00 |
4.22 |
4.44 |
4.64 |
3.56 |
3.79 |
4.03 |
4.25 |
4.47 |
4.69 |
4.89 |
|||||||||||||
29 |
3.78 |
4.03 |
4.27 |
4.52 |
4.76 |
4.99 |
5.21 |
4.06 |
4.31 |
4.55 |
4.80 |
5.04 |
5.27 |
5.48 |
|||||||||||||
30 |
4.24 |
4.51 |
4.80 |
5.08 |
5.36 |
5.61 |
5.86 |
4.54 |
4.82 |
5.11 |
5.39 |
5.66 |
5.91 |
6.16 |
|||||||||||||
TABLE V
Temperature corrections, c, required for the density of dry wines and dealcoholised dry wines,
measured using an ordinary-glass pycnometer or hydrometer at t °C, in order to correct to 20 °C
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
Alcoholic strength |
||||||||||||||||||||||||||||||||||||||||||||||||
0 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
|||||||||||||||||||||||||
10 |
1.45 |
1.51 |
1.55 |
1.58 |
1.64 |
1.76 |
1.78 |
1.89 |
1.98 |
2.09 |
2.21 |
2.34 |
2.47 |
2.60 |
2.75 |
2.93 |
3.06 |
3.22 |
3.39 |
3.57 |
3.75 |
3.93 |
4.12 |
4.31 |
||||||||||||||||||||||||
11 |
1.35 |
1.40 |
1.43 |
1.47 |
1.52 |
1.58 |
1.65 |
1.73 |
1.83 |
1.93 |
2.03 |
2.15 |
2.26 |
2.38 |
2.51 |
2.65 |
2.78 |
2.93 |
3.08 |
3.24 |
3.40 |
3.57 |
3.73 |
3.90 |
||||||||||||||||||||||||
12 |
1.24 |
1.28 |
1.31 |
1.34 |
1.39 |
1.44 |
1.50 |
1.58 |
1.66 |
1.75 |
1.84 |
1.94 |
2.04 |
2.15 |
2.26 |
2.38 |
2.51 |
2.63 |
2.77 |
2.91 |
3.05 |
3.19 |
3.34 |
3.49 |
||||||||||||||||||||||||
13 |
1.12 |
1.16 |
1.18 |
1.21 |
1.25 |
1.30 |
1.35 |
1.42 |
1.49 |
1.56 |
1.64 |
1.73 |
1.82 |
1.91 |
2.01 |
2.11 |
2.22 |
2.33 |
2.45 |
2.57 |
2.69 |
2.81 |
2.95 |
3.07 |
||||||||||||||||||||||||
14 |
0.99 |
1.03 |
1.05 |
1.07 |
1.11 |
1.14 |
1.19 |
1.24 |
1.31 |
1.37 |
1.44 |
1.52 |
1.59 |
1.67 |
1.75 |
1.84 |
1.93 |
2.03 |
2.13 |
2.23 |
2.33 |
2.44 |
2.55 |
2.66 |
||||||||||||||||||||||||
15 |
0.86 |
0.89 |
0.90 |
0.92 |
0.95 |
0.98 |
1.02 |
1.07 |
1.12 |
1.17 |
1.23 |
1.29 |
1.35 |
1.42 |
1.49 |
1.56 |
1.63 |
1.71 |
1.80 |
1.88 |
1.96 |
2.05 |
2.14 |
2.23 |
||||||||||||||||||||||||
16 |
0.71 |
0.73 |
0.74 |
0.76 |
0.78 |
0.81 |
0.84 |
0.87 |
0.91 |
0.95 |
0.99 |
1.05 |
1.10 |
1.15 |
1.21 |
1.27 |
1.33 |
1.39 |
1.45 |
1.52 |
1.59 |
1.66 |
1.73 |
1.80 |
||||||||||||||||||||||||
17 |
0.55 |
0.57 |
0.57 |
0.59 |
0.60 |
0.62 |
0.65 |
0.67 |
0.70 |
0.74 |
0.77 |
0.81 |
0.84 |
0.88 |
0.92 |
0.96 |
1.01 |
1.05 |
1.10 |
1.15 |
1.20 |
1.26 |
1.31 |
1.36 |
||||||||||||||||||||||||
18 |
0.38 |
0.39 |
0.39 |
0.40 |
0.41 |
0.43 |
0.44 |
0.46 |
0.48 |
0.50 |
0.52 |
0.55 |
0.57 |
0.60 |
0.62 |
0.65 |
0.68 |
0.71 |
0.74 |
0.78 |
0.81 |
0.85 |
0.88 |
0.91 |
||||||||||||||||||||||||
19 |
0.19 |
0.20 |
0.20 |
0.21 |
0.21 |
0.22 |
0.23 |
0.24 |
0.25 |
0.26 |
0.27 |
0.28 |
0.29 |
0.30 |
0.32 |
0.33 |
0.34 |
0.36 |
0.38 |
0.39 |
0.41 |
0.43 |
0.44 |
0.46 |
||||||||||||||||||||||||
20 |
||||||||||||||||||||||||||||||||||||||||||||||||
21 |
0.21 |
0.22 |
0.22 |
0.23 |
0.23 |
0.24 |
0.25 |
0.25 |
0.26 |
0.27 |
0.28 |
0.29 |
0.31 |
0.32 |
0.34 |
0.35 |
0.36 |
0.38 |
0.39 |
0.41 |
0.43 |
0.44 |
0.46 |
0.48 |
||||||||||||||||||||||||
22 |
0.43 |
0.45 |
0.45 |
0.46 |
0.47 |
0.49 |
0.50 |
0.52 |
0.54 |
0.56 |
0.58 |
0.60 |
0.62 |
0.65 |
0.68 |
0.71 |
0.73 |
0.77 |
0.80 |
0.83 |
0.86 |
0.89 |
0.93 |
0.96 |
||||||||||||||||||||||||
23 |
0.67 |
0.69 |
0.70 |
0.71 |
0.72 |
0.74 |
0.77 |
0.79 |
0.82 |
0.85 |
0.88 |
0.91 |
0.95 |
0.99 |
1.03 |
1.07 |
1.12 |
1.16 |
1.21 |
1.25 |
1.30 |
1.35 |
1.40 |
1.45 |
||||||||||||||||||||||||
24 |
0.91 |
0.93 |
0.95 |
0.97 |
0.99 |
1.01 |
1.04 |
1.07 |
1.11 |
1.15 |
1.20 |
1.24 |
1.29 |
1.34 |
1.39 |
1.45 |
1.50 |
1.56 |
1.62 |
1.69 |
1.76 |
1.82 |
1.88 |
1.95 |
||||||||||||||||||||||||
25 |
1.16 |
1.19 |
1.21 |
1.23 |
1.26 |
1.29 |
1.33 |
1.37 |
1.42 |
1.47 |
1.52 |
1.57 |
1.63 |
1.70 |
1.76 |
1.83 |
1.90 |
1.97 |
2.05 |
2.13 |
2.21 |
2.29 |
2.37 |
2.45 |
||||||||||||||||||||||||
26 |
1.42 |
1.46 |
1.49 |
1.51 |
1.54 |
1.58 |
1.62 |
1.67 |
1.73 |
1.79 |
1.85 |
1.92 |
1.99 |
2.07 |
2.14 |
2.22 |
2.31 |
2.40 |
2.49 |
2.58 |
2.67 |
2.77 |
2.86 |
2.96 |
||||||||||||||||||||||||
27 |
1.69 |
1.74 |
1.77 |
1.80 |
1.83 |
1.88 |
1.93 |
1.98 |
2.05 |
2.12 |
2.20 |
2.27 |
2.35 |
2.44 |
2.53 |
2.63 |
272 |
2.82 |
2.93 |
3.04 |
3.14 |
3.25 |
3.37 |
3.48 |
||||||||||||||||||||||||
28 |
1.97 |
2.03 |
2.06 |
2.09 |
2.14 |
2.19 |
2.24 |
2.31 |
2.38 |
2.46 |
2.55 |
2.63 |
2.73 |
2.83 |
2.93 |
3.03 |
3.14 |
3.26 |
3.38 |
3.50 |
3.62 |
3.75 |
3.85 |
4.00 |
||||||||||||||||||||||||
29 |
2.26 |
2.33 |
2.37 |
2.41 |
2.45 |
2.50 |
2.57 |
2.64 |
2.73 |
2.82 |
2.91 |
2.99 |
3.11 |
3.22 |
3.34 |
3.46 |
3.58 |
3.70 |
3.84 |
3.97 |
4.11 |
4.25 |
4.39 |
4.54 |
||||||||||||||||||||||||
30 |
2.56 |
2.64 |
2.67 |
2.72 |
2.77 |
2.83 |
2.90 |
2.98 |
3.08 |
3.18 |
3.28 |
3.38 |
3.50 |
3.62 |
3.75 |
3.88 |
4.02 |
4.16 |
4.30 |
4.46 |
4.61 |
4.76 |
4.92 |
5.07 |
||||||||||||||||||||||||
Note: This table can be used to convert the density to
TABLE VI
Temperature corrections, c, required for the density of concentrated musts, measured using an ordinary-glass pycnometer or hydrometer at t °C, in order to correct to 20 °C.
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
Density |
|||||||||||||||||||||||
1.05 |
1.06 |
1.07 |
1.08 |
1.09 |
1.10 |
1.11 |
1.12 |
1.13 |
1.14 |
1.15 |
1.16 |
1.18 |
1.20 |
1.22 |
1.24 |
1.26 |
1.28 |
1.30 |
1.32 |
1.34 |
1.36 |
||
10 |
2.17 |
2.34 |
2.52 |
2.68 |
2.85 |
2.99 |
3.16 |
3.29 |
3.44 |
3.58 |
3.73 |
3.86 |
4.13 |
4.36 |
4.60 |
4.82 |
5.02 |
5.25 |
5.39 |
5.56 |
-5.73 |
5.87 |
|
11 |
2.00 |
2.16 |
2.29 |
2.44 |
2.59 |
2.73 |
2.86 |
2.99 |
3.12 |
3.24 |
3.37 |
3.48 |
3.71 |
3.94 |
4.15 |
4.33 |
4.52 |
4.69 |
4.85 |
5.01 |
5.15 |
5.29 |
|
12 |
1.81 |
1.95 |
2.08 |
2.21 |
2.34 |
2.47 |
2.58 |
2.70 |
2.82 |
2.92 |
3.03 |
3.14 |
3.35 |
3.55 |
3.72 |
3.90 |
4.07 |
4.23 |
4.37 |
4.52 |
4.64 |
4.77 |
|
13 |
1.62 |
1.74 |
1.85 |
1.96 |
2.07 |
2.17 |
2.28 |
2.38 |
2.48 |
2.59 |
2.68 |
2.77 |
2.94 |
3.11 |
3.28 |
3.44 |
3.54 |
3.72 |
3.86 |
3.99 |
4.12 |
4.24 |
|
14 |
1.44 |
1.54 |
1.64 |
1.73 |
1.82 |
1.92 |
2.00 |
2.08 |
2.17 |
2.25 |
2.34 |
2.42 |
2.57 |
2.73 |
2.86 |
2.99 |
3.12 |
3.24 |
3.35 |
3.46 |
3.57 |
3.65 |
|
15 |
1.21 |
1.29 |
1.37 |
1.45 |
1.53 |
1.60 |
1.68 |
1.75 |
1.82 |
1.89 |
1.97 |
2.03 |
2.16 |
2.28 |
2.40 |
2.51 |
2.61 |
2.71 |
2.80 |
2.89 |
2.94 |
3.01 |
|
16 |
1.00 |
1.06 |
1.12 |
1.19 |
1.25 |
1.31 |
1.37 |
1.43 |
1.49 |
1.54 |
1.60 |
1.65 |
1.75 |
1.84 |
1.94 |
2.02 |
2.09 |
2.17 |
2.23 |
2.30 |
2.36 |
2.42 |
|
17 |
0.76 |
0.82 |
0.86 |
0.91 |
0.96 |
1.00 |
1.05 |
1.09 |
1.14 |
1.18 |
1.22 |
1.25 |
1.32 |
1.39 |
1.46 |
1.52 |
1.57 |
1.63 |
1.67 |
1.71 |
1.75 |
1.79 |
|
18 |
0.53 |
0.56 |
0.59 |
0.63 |
0.65 |
0.69 |
0.72 |
0.74 |
0.77 |
0.80 |
0.82 |
0.85 |
0.90 |
0.95 |
0.99 |
1.02 |
1.05 |
1.09 |
1.13 |
1.16 |
1.18 |
1.20 |
|
19 |
0.28 |
0.30 |
0.31 |
0.33 |
0.35 |
0.36 |
0.38 |
0.39 |
0.41 |
0.42 |
0.43 |
0.43 |
0.46 |
0.48 |
0.50 |
0.52 |
0.54 |
0.55 |
0.57 |
0.58 |
0.59 |
0.60 |
|
20 |
|||||||||||||||||||||||
21 |
0.28 |
0.29 |
0.31 |
0.33 |
0.34 |
0.36 |
0.37 |
0.39 |
0.40 |
0.41 |
0.43 |
0.44 |
0.46 |
0.48 |
0.51 |
0.54 |
0,56 |
0.57 |
0.58 |
0.59 |
0.60 |
0.60 |
|
22 |
0.55 |
0.58 |
0.61 |
0.64 |
0.67 |
0.70 |
0.73 |
0.76 |
0.78 |
0.81 |
0.84 |
0.87 |
0.93 |
0.97 |
1.02 |
1.06 |
1.09 |
1.12 |
1.15 |
1.17 |
1.19 |
1.19 |
|
23 |
0.85 |
0.90 |
0.95 |
0.99 |
1.04 |
1.08 |
1.12 |
1.16 |
1.21 |
1.25 |
1.29 |
1.32 |
1.39 |
1.46 |
1.52 |
1.58 |
1.62 |
1.68 |
1.72 |
1.75 |
1.77 |
1.79 |
|
24 |
1.15 |
1.19 |
1.25 |
1.31 |
1.37 |
1.43 |
1.48 |
1.54 |
1.60 |
1.65 |
1.71 |
1.76 |
1.86 |
1.95 |
2.04 |
2.11 |
2.17 |
2.23 |
2.29 |
2.33 |
2.35 |
2.37 |
|
25 |
1.44 |
1.52 |
1.59 |
1.67 |
1.74 |
1.81 |
1.88 |
1.95 |
2.02 |
2.09 |
2.16 |
2.22 |
2.34 |
2.45 |
2.55 |
2.64 |
2.74 |
2.81 |
7.87 |
2.90 |
2.92 |
2.96 |
|
26 |
1.76 |
1.84 |
1.93 |
2.02 |
2.10 |
2.18 |
2.25 |
2.33 |
2.41 |
2.49 |
2.56 |
2.64 |
2.78 |
2.91 |
3.03 |
3.15 |
3.26 |
3.37 |
3.47 |
3.55 |
3.62 |
3.60 |
|
27 |
2.07 |
2.16 |
2.26 |
2.36 |
2.46 |
2.56 |
2.65 |
2.74 |
2.83 |
2.91 |
3.00 |
3.07 |
3.24 |
3.39 |
3.55 |
3.69 |
3.82 |
3.94 |
4.04 |
4.14 |
4.23 |
4.30 |
|
28 |
2.39 |
2.51 |
2.63 |
2.74 |
2.85 |
2.96 |
3.06 |
3.16 |
3.28 |
3.38 |
3.48 |
3.57 |
3.75 |
3.92 |
4.08 |
4.23 |
4.37 |
4.51 |
4.62 |
4.73 |
4.80 |
4.86 |
|
29 |
2.74 |
2.86 |
2.97 |
3.09 |
3.22 |
3.34 |
3.46 |
3.57 |
3.69 |
3.90 |
3.90 |
4.00 |
4.20 |
4.39 |
4.58 |
4.74 |
4.90 |
5.05 |
5.19 |
5.31 |
5.40 |
5.48 |
|
30 |
3.06 |
3.21 |
3.35 |
3.50 |
3.63 |
3.77 |
3.91 |
4.02 |
4.15 |
4.28 |
4.40 |
4.52 |
4.75 |
4.96 |
5.16 |
5.35 |
5.52 |
5.67 |
5.79 |
5.91 |
5.99 |
6.04 |
Note: This table can be used to convert the density to
TABLE VII
Temperature corrections, c, required for the density of liqueur wines, measured using an ordinary-glass pycnometer or hydromete at t °C, in order to correct to 20 °C
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
13% vol. wines |
15% vol. wines |
17% vol. wines |
||||||||||||||||||||
Density |
Density |
Density |
||||||||||||||||||||
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
||
10 |
2.24 |
2.58 |
2.93 |
3.27 |
3.59 |
3.89 |
4.18 |
2.51 |
2.85 |
3.20 |
3.54 |
3.85 |
4.02 |
4.46 |
2.81 |
3.15 |
3.50 |
3.84 |
4.15 |
4.45 |
4.74 |
|
11 |
2.06 |
2.37 |
2.69 |
2.97 |
3.26 |
3.53 |
3.78 |
2.31 |
2.61 |
2.93 |
3.21 |
3.51 |
3.64 |
4.02 |
2.57 |
2.89 |
3.20 |
3.49 |
3.77 |
4.03 |
4.28 |
|
12 |
1.87 |
2.14 |
2.42 |
2.67 |
2.94 |
3.17 |
3.40 |
2.09 |
2.36 |
2.64 |
2.90 |
3.16 |
3.27 |
3.61 |
2.32 |
2.60 |
2.87 |
3.13 |
3.39 |
3.63 |
3.84 |
|
13 |
1.69 |
1.93 |
2.14 |
2.37 |
2.59 |
2.80 |
3.00 |
1.88 |
2.12 |
2.34 |
2.56 |
2.78 |
2.88 |
3.19 |
2.09 |
2.33 |
2.55 |
2.77 |
2.98 |
3.19 |
3.39 |
|
14 |
1.49 |
1.70 |
1.90 |
2.09 |
2.27 |
2.44 |
2.61 |
1.67 |
1.86 |
2.06 |
2.25 |
2.45 |
2.51 |
2.77 |
1.83 |
2.03 |
2.23 |
2.42 |
2.61 |
2.77 |
2.94 |
|
15 |
1.25 |
1.42 |
1.59 |
1.75 |
1.90 |
2.05 |
2.19 |
1.39 |
1.56 |
1.72 |
1.88 |
2.03 |
2.11 |
2.32 |
1.54 |
1.71 |
1.87 |
2.03 |
2.18 |
2.32 |
2.47 |
|
16 |
1.03 |
1.17 |
1.30 |
1.43 |
1.55 |
1.67 |
1.78 |
1.06 |
1.27 |
1.40 |
1.53 |
1.65 |
1.77 |
1.88 |
1.25 |
1.39 |
1.52 |
1.65 |
1.77 |
1.89 |
2.00 |
|
17 |
0,80 |
0.90 |
1.00 |
1.09 |
1.17 |
1.27 |
1.36 |
0.87 |
0.98 |
1.08 |
1.17 |
1.26 |
1.35 |
1.44 |
0.96 |
1.06 |
1.16 |
1.26 |
1.35 |
1.44 |
1.52 |
|
18 |
0.54 |
0.61 |
0.68 |
0.75 |
0,81 |
0.86 |
0.92 |
0.60 |
0.66 |
0.73 |
0.80 |
0.85 |
0.91 |
0.97 |
0.66 |
0.72 |
0.79 |
0.86 |
0.92 |
0,97 |
1.03 |
|
19 |
0.29 |
0.33 |
0.36 |
0.39 |
0.42 |
0.45 |
0.48 |
0.32 |
0.36 |
0.39 |
0.42 |
0.45 |
0.48 |
0.51 |
0.35 |
0.38 |
0.41 |
0.45 |
0.48 |
0.51 |
0.53 |
|
20 |
||||||||||||||||||||||
21 |
0.29 |
0.32 |
0.35 |
0.39 |
0.42 |
0.45 |
0,47 |
0.32 |
0.35 |
0.38 |
0.42 |
0.45 |
0.48 |
0.50 |
0.34 |
0.38 |
0.41 |
0.44 |
0.47 |
0,50 |
0.53 |
|
22 |
0.57 |
0.64 |
0.70 |
0.76 |
0.82 |
0.88 |
0.93 |
0.63 |
0.69 |
0.75 |
0.81 |
0.87 |
0.93 |
0.99 |
0.68 |
0,75 |
0.81 |
0.87 |
0.93 |
0.99 |
1.04 |
|
23 |
0.89 |
0,98 |
1.08 |
1.17 |
1.26 |
1.34 |
1.43 |
0,97 |
1.06 |
1.16 |
1.25 |
1.34 |
1.42 |
1.51 |
1.06 |
1.15 |
1.25 |
1.34 |
1.42 |
1.51 |
1.59 |
|
24 |
1.22 |
1.34 |
1.44 |
1.56 |
1.68 |
1.79 |
1.90 |
1.32 |
1.44 |
1.54 |
1.66 |
1.78 |
1.89 |
2.00 |
1.43 |
1.56 |
1.65 |
1.77 |
1.89 |
2.00 |
2.11 |
|
25 |
1.61 |
1.68 |
1.83 |
1.98 |
2.12 |
2.26 |
2.40 |
1.66 |
1.81 |
1.96 |
2.11 |
2.25 |
2.39 |
2.52 |
1.80 |
1.94 |
2.09 |
2.24 |
2.39 |
2.52 |
2.66 |
|
26 |
1.87 |
2.05 |
2.22 |
2.40 |
2.56 |
2.71 |
2.87 |
2.02 |
2.20 |
2.37 |
2.54 |
2.70 |
2.85 |
3.01 |
2.18 |
2.36 |
2.53 |
2.71 |
2.86 |
3.02 |
3.17 |
|
27 |
2.21 |
2.42 |
2.60 |
2.80 |
3.00 |
3.18 |
3.35 |
2.39 |
2.59 |
2.78 |
2.98 |
3.17 |
3.35 |
3.52 |
2.58 |
2.78 |
2.97 |
3.17 |
3.36 |
3.54 |
3.71 |
|
28 |
2.56 |
2.80 |
3.02 |
3.25 |
3.47 |
3.67 |
3.89 |
2.75 |
2.89 |
3.22 |
3.44 |
3.66 |
3.96 |
4.07 |
2.97 |
3.21 |
3.44 |
3.66 |
3.88 |
4.09 |
4.30 |
|
29 |
2.93 |
3.19 |
3.43 |
3.66 |
3.91 |
4.14 |
4.37 |
3.16 |
3.41 |
3.65 |
3.89 |
4.13 |
4.36 |
4.59 |
3.40 |
3.66 |
3.89 |
4.13 |
4.38 |
4.61 |
4.82 |
|
30 |
3.31 |
3.57 |
3.86 |
4.15 |
4.41 |
4.66 |
4.92 |
3.55 |
3.81 |
4.10 |
4.38 |
4.66 |
4.90 |
5.16 |
3.82 |
4.08 |
4.37 |
4.65 |
4.93 |
5.17 |
5.42 |
TABLE VII (continued)
Temperature corrections, c, required for the density of liqueur wines, measured using an ordinary-glass pycnometer or hydrometer at °C, in order to correct to 20 °C.
- if t°C is lower than 20°C |
|
+ if t°C is higher than 20°C |
19% vol. wines |
21% vol. wines |
||||||||||||||
Density |
Density |
||||||||||||||
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
1.000 |
1.020 |
1.040 |
1.060 |
1.080 |
1.100 |
1.120 |
||
10 |
3.14 |
3.48 |
3.83 |
4.17 |
4.48 |
4.78 |
5.07 |
3.50 |
3.84 |
4.19 |
4.52 |
4.83 |
5.12 |
5.41 |
|
11 |
2.87 |
3.18 |
3.49 |
3.78 |
4.06 |
4.32 |
4.57 |
3.18 |
3.49 |
3.80 |
4.09 |
4.34 |
4.63 |
4.88 |
|
12 |
2.58 |
2.96 |
3.13 |
3.39 |
3.65 |
3.88 |
4.10 |
2.86 |
3.13 |
3.41 |
3.67 |
3.92 |
4.15 |
4.37 |
|
13 |
2.31 |
2.55 |
2.77 |
2.99 |
3.20 |
3.41 |
3.61 |
2.56 |
2.79 |
3.01 |
3.23 |
3.44 |
3.65 |
3.85 |
|
14 |
2.03 |
2.23 |
2.43 |
2.61 |
2.80 |
2.96 |
3.13 |
2.23 |
2.43 |
2.63 |
2.81 |
3.00 |
3.16 |
3.33 |
|
15 |
1.69 |
1.86 |
2.02 |
2.18 |
2.33 |
2.48 |
2.62 |
1.86 |
2.03 |
2.19 |
2.35 |
2.50 |
2.65 |
2.80 |
|
16 |
1.38 |
1.52 |
1.65 |
1.78 |
1.90 |
2.02 |
2.13 |
1.51 |
1.65 |
1.78 |
1.91 |
2.03 |
2.15 |
2.26 |
|
17 |
1.06 |
1.16 |
1.26 |
1 .35 |
1.44 |
1.53 |
1.62 |
1.15 |
1.25 |
1.35 |
1.45 |
1.54 |
1.63 |
1.71 |
|
18 |
0,73 |
0.79 |
0.85 |
0.92 |
0.98 |
1.03 |
1.09 |
0.79 |
0.85 |
0.92 |
0.98 |
1.05 |
1.10 |
1.15 |
|
19 |
0.38 |
0.41 |
0.44 |
0.48 |
0.51 |
0.52 |
0.56 |
0.41 |
0.44 |
0.47 |
0.51 |
0.54 |
0.57 |
0.59 |
|
20 |
|||||||||||||||
21 |
0.37 |
0.41 |
0.44 |
0.47 |
0.50 |
0.53 |
0.56 |
0.41 |
0.44 |
0.47 |
0.51 |
0.54 |
0.57 |
0.59 |
|
22 |
0.75 |
0.81 |
0.87 |
0.93 |
0.99 |
1.04 |
1.10 |
0.81 |
0.88 |
0.94 |
1.00 |
1.06 |
1.10 |
1.17 |
|
23 |
1.15 |
1.30 |
1.34 |
1.43 |
1.51 |
1.60 |
1.68 |
1.25 |
1.34 |
1.44 |
1.63 |
1.61 |
1.70 |
1.78 |
|
24 |
1.55 |
1.67 |
1.77 |
1.89 |
2.00 |
2.11 |
2.23 |
1.68 |
1.80 |
1.90 |
2.02 |
2.13 |
2.25 |
2.36 |
|
25 |
1.95 |
2.09 |
2.24 |
2.39 |
2.53 |
2.67 |
2.71 |
2.11 |
2.25 |
2.40 |
2.55 |
2.69 |
2.83 |
2.97 |
|
26 |
2.36 |
2.54 |
2.71 |
2.89 |
3.04 |
3.20 |
3.35 |
2.55 |
2.73 |
2.90 |
3.07 |
3.22 |
3.38 |
3.54 |
|
27 |
2.79 |
2.99 |
3.18 |
3.38 |
3.57 |
3.75 |
3.92 |
3.01 |
3.20 |
3.40 |
3.59 |
3.78 |
3.96 |
4.13 |
|
28 |
3.20 |
3.44 |
3.66 |
3.89 |
4.11 |
4.32 |
4.53 |
3.46 |
3.69 |
3.93 |
4.15 |
4.36 |
4.58 |
4.77 |
|
29 |
3.66 |
3.92 |
4.15 |
4.40 |
4.64 |
4.87 |
5.08 |
3.95 |
4.20 |
4.43 |
4.68 |
4.92 |
5.15 |
5.36 |
|
30 |
4.11 |
4.37 |
4.66 |
4.94 |
5.22 |
5.46 |
5.71 |
4.42 |
4.68 |
4.97 |
5.25 |
5.53 |
5.77 |
6.02 |
Annex II
Comparison of results for the methods of measurement of density using a frequency oscillator (Method B) and using a hydrostatic balance (Method C)
Using samples with densities between 0.992 and 1.012 g/cm3, the repeatability and reproducibility were measured using an inter-laboratory test. The densities of the different samples as measured using a hydrostatic balance and using electronic densimetry were compared, including the repeatability and reproducibility values derived from the multi-year inter-comparison tests performed on a large scale.
- Samples
Wines with different densities and alcoholic strengths prepared monthly on an industrial scale, taken from a stock of bottles stored under normal conditions, and supplied anonymously to the laboratories.
- Laboratories
Laboratories participating in the monthly tests organised by Unione Italiana Vini (Verona, Italy) according to ISO 5725 (UNI 9225) regulations and the International Harmonized Protocol for the Proficiency Testing of Analytical Chemical Laboratories produced by the AOAC, ISO and IUPAC, and ISO 43 and ILAC G13 guidelines. An annual report is provided by the above-mentioned organisation to all participants.
- Apparatus
- An electronic hydrostatic balance (with precision to 5 decimal places), equipped if possible with a data-processing device.
- An electronic densimeter, equipped if possible with an autosampler.
- Analyses
According to the rules for the validation of methods of analysis, each sample was analysed twice consecutively to determine the alcoholic strength.
- Results
Table 1 shows the results of the measurements obtained by the laboratories using a hydrostatic balance.
Table 2 shows the results obtained by the laboratories using an electronic densimeter.
- Evaluation of results
- The test results were examined for evidence of individual systemic error (p<0.025) using Cochran’s and Grubbs’ tests successively, according to the procedures described in the internationally accepted Protocol for the Design, Conduct and Interpretation of Method-Performance Studies.
6.2. Repeatability (r) et reproducibility (R)
Calculations for repeatability (r) and reproducibility (R) as defined by the protocol were carried out on the results remaining after the removal of outliers. When assessing a new method, there is often no validated reference or statutory method to compare precision criteria; ‘predicted’ levels of precision and therefore used to compare the precision data obtained from collaborative tests. These predicted levels are calculated from the Horwitz formula. Comparison of the test results and the predicted levels give an indication as to whether the method is sufficiently precise for the level of analyte being measured. The Horwitz predicted value is calculated from the Horwitz equation.
where C is the measured concentration of analyte expressed as a decimal (e.g. 1 g/100 g = 0.01).
The Horrat value gives a comparison of the actual precision measured with the precision predicted by the Horwitz formula for the method and at the particular level of concentration of the analyte. It is calculated as follows:
HoR = RSDR(measured)/RSDR(Horwitz)
6.3 Inter-laboratory reproducibility
A Horrat value of 1 usually indicates satisfactory reproducibility, whereas a value of more than 2 usually indicates unsatisfactory reproducibility, i.e. reproducibility that is too variable for analytical purposes or where the variation obtained is greater than that predicted for the type of method employed. Hor is also calculated and used to measure intra-laboratory reproducibility, using the following approximation:
RSDr(Horwitz) = 0.66 RSDR(Horwitz) (this assumes the approximation that r = 0.66 R)
CrD95 is the critical difference for a 95% probability level. It is calculated according to Resolution OIV-MA-AS1-08.
Table 3 shows the differences between the measurements obtained by laboratories using an electronic densimeter and those using a hydrostatic balance.
6.4 Precision parameters
Table 4 shows the overall averages for the precision parameters calculated from all monthly tests carried out between January 2008 and December 2010
Table 1: Results obtained by laboratories that conducted tests using a hydrostatic balance (HB)
Sample |
Average |
Total no. of values |
No. of selected values |
Repeatability |
sr |
RSDr |
Hor |
Reproducibility |
sR |
RSDRcalc |
HoR |
No. of repet. |
CrD95 |
01/08 |
0.995491 |
130 |
120 |
0.0001701 |
0.0000607 |
0.0061016 |
0.0046193 |
0.0005979 |
0.0002135 |
0.0214502 |
0.0107178 |
2 |
0.0004141 |
02/08 |
1.011475 |
146 |
125 |
0.0004714 |
0.0001684 |
0.0166457 |
0.0126320 |
0.0008705 |
0.0003109 |
0.0307366 |
0.0153947 |
2 |
0.0005686 |
03/08 |
0.992473 |
174 |
161 |
0.0001470 |
0.0000525 |
0.0052898 |
0.0040029 |
0.0004311 |
0.0001540 |
0.0155140 |
0.0077482 |
2 |
0.0002959 |
04/08 |
0.993147 |
172 |
155 |
0.0002761 |
0.0000986 |
0.0099274 |
0.0075130 |
0.0005446 |
0.0001945 |
0.0195839 |
0.0097818 |
2 |
0.0003595 |
05/08 |
1.004836 |
150 |
138 |
0.0001882 |
0.0000672 |
0.0066905 |
0.0050723 |
0.0007495 |
0.0002677 |
0.0266373 |
0.0133283 |
2 |
0.0005215 |
06/08 |
0.993992 |
152 |
136 |
0.0001486 |
0.0000531 |
0.0053391 |
0.0040411 |
0.0005302 |
0.0001894 |
0.0190506 |
0.0095167 |
2 |
0.0003675 |
07/08 |
0.992447 |
162 |
150 |
0.0002660 |
0.0000950 |
0.0095709 |
0.0072424 |
0.0006046 |
0.0002159 |
0.0217575 |
0.0108664 |
2 |
0.0004063 |
08/08 |
0.992210 |
162 |
151 |
0.0002619 |
0.0000935 |
0.0094281 |
0.0071341 |
0.0006309 |
0.0002253 |
0.0227108 |
0.0113420 |
2 |
0.0004265 |
09/08 |
1.002600 |
148 |
131 |
0.0001093 |
0.0000390 |
0.0038920 |
0.0029496 |
0.0007000 |
0.0002500 |
0.0249341 |
0.0124719 |
2 |
0.0004919 |
10/08 |
0.994482 |
174 |
152 |
0.0001228 |
0.0000439 |
0.0044105 |
0.0033385 |
0.0004250 |
0.0001518 |
0.0152645 |
0.0076259 |
2 |
0.0002942 |
11/08 |
0.992010 |
136 |
125 |
0.0000909 |
0.0000325 |
0.0032742 |
0.0024775 |
0.0004256 |
0.0001520 |
0.0153217 |
0.0076516 |
2 |
0.0002975 |
01/09 |
0.994184 |
174 |
152 |
0.0001655 |
0.0000591 |
0.0059435 |
0.0044987 |
0.0005439 |
0.0001942 |
0.0195384 |
0.0097606 |
2 |
0.0003756 |
02/09 |
0.992266 |
118 |
101 |
0.0001742 |
0.0000622 |
0.0062682 |
0.0047431 |
0.0005210 |
0.0001861 |
0.0187534 |
0.0093658 |
2 |
0.0003580 |
03/09 |
0.991886 |
164 |
135 |
0.0001850 |
0.0000661 |
0.0066603 |
0.0050395 |
0.0004781 |
0.0001707 |
0.0172136 |
0.0085963 |
2 |
0.0003251 |
04/09 |
0.993632 |
180 |
150 |
0.0001523 |
0.0000544 |
0.0054754 |
0.0041440 |
0.0004270 |
0.0001525 |
0.0153476 |
0.0076664 |
2 |
0.0002922 |
05/09 |
1.011061 |
116 |
100 |
0.0003659 |
0.0001307 |
0.0129234 |
0.0098067 |
0.0008338 |
0.0002978 |
0.0294527 |
0.0147508 |
2 |
0.0005605 |
06/09 |
0.992063 |
114 |
105 |
0.0002923 |
0.0001044 |
0.0105238 |
0.0079631 |
0.0005257 |
0.0001877 |
0.0189240 |
0.0094507 |
2 |
0.0003418 |
07/09 |
0.992708 |
172 |
155 |
0.0002892 |
0.0001033 |
0.0104040 |
0.0078732 |
0.0006156 |
0.0002199 |
0.0221478 |
0.0110617 |
2 |
0.0004106 |
08/09 |
0.993064 |
136 |
127 |
0.0002926 |
0.0001045 |
0.0105224 |
0.0079632 |
0.0007520 |
0.0002686 |
0.0270446 |
0.0135081 |
2 |
0.0005112 |
09/09 |
1.005285 |
118 |
110 |
0.0002946 |
0.0001052 |
0.0104661 |
0.0079352 |
0.0007226 |
0.0002581 |
0.0256704 |
0.0128454 |
2 |
0.0004892 |
10/09 |
0.992905 |
150 |
132 |
0.0002234 |
0.0000798 |
0.0080358 |
0.0060812 |
0.0004498 |
0.0001607 |
0.0161803 |
0.0080815 |
2 |
0.0002978 |
11/09 |
0.994016 |
142 |
127 |
0.0001896 |
0.0000677 |
0.0068114 |
0.0051555 |
0.0004739 |
0.0001693 |
0.0170278 |
0.0085062 |
2 |
0.0003214 |
01/10 |
0.994734 |
170 |
152 |
0.0002125 |
0.0000759 |
0.0076288 |
0.0057748 |
0.0005406 |
0.0001931 |
0.0194104 |
0.0096975 |
2 |
0.0003672 |
02/10 |
0.993177 |
120 |
110 |
0.0002210 |
0.0000789 |
0.0079467 |
0.0060140 |
0.0005800 |
0.0002071 |
0.0208565 |
0.0104175 |
2 |
0.0003950 |
03/10 |
0.992799 |
148 |
136 |
0.0002277 |
0.0000813 |
0.0081923 |
0.0061995 |
0.0015157 |
0.0005413 |
0.0545262 |
0.0272335 |
2 |
0.0010657 |
04/10 |
0.995420 |
172 |
157 |
0.0002644 |
0.0000944 |
0.0094866 |
0.0071819 |
0.0006286 |
0.0002245 |
0.0225542 |
0.0112693 |
2 |
0.0004244 |
05/10 |
1.002963 |
120 |
108 |
0.0007086 |
0.0002531 |
0.0252330 |
0.0191244 |
0.0013667 |
0.0004881 |
0.0486677 |
0.0243447 |
2 |
0.0008991 |
06/10 |
0.992546 |
120 |
113 |
0.0001737 |
0.0000620 |
0.0062506 |
0.0047300 |
0.0005435 |
0.0001941 |
0.0195567 |
0.0097673 |
2 |
0.0003744 |
07/10 |
0.992831 |
174 |
152 |
0.0003003 |
0.0001073 |
0.0108031 |
0.0081753 |
0.0006976 |
0.0002492 |
0.0250959 |
0.0125344 |
2 |
0.0004699 |
08/10 |
0.993184 |
144 |
130 |
0.0001799 |
0.0000642 |
0.0064674 |
0.0048945 |
0.0005951 |
0.0002125 |
0.0213984 |
0.0106882 |
2 |
0.0004111 |
09/10 |
1.012293 |
114 |
103 |
0.0002265 |
0.0000809 |
0.0079907 |
0.0060647 |
0.0014586 |
0.0005209 |
0.0514596 |
0.0257772 |
2 |
0.0010251 |
10/10 |
0.992289 |
154 |
136 |
0.0006386 |
0.0002281 |
0.0229860 |
0.0173933 |
0.0007033 |
0.0002512 |
0.0253124 |
0.0126415 |
2 |
0.0003812 |
11/10 |
0.994649 |
130 |
112 |
0.0002902 |
0.0001036 |
0.0104200 |
0.0078876 |
0.0005287 |
0.0001888 |
0.0189830 |
0.0094838 |
2 |
0.0003445 |
Table 2: Results obtained by laboratories that conducted tests using an electronic densimeter (ED)
Sample |
Average |
Total no. of values |
No. of selected values |
Repeatability |
sr |
RSDr |
Hor |
Reproducibility |
sR |
RSDRcalc |
HoR |
No. of repet. |
CrD95 |
01/08 |
0.995504 |
114 |
108 |
0.0000755 |
0.0000270 |
0.0027085 |
0.0020505 |
0.0001571 |
0.0000561 |
0.0056361 |
0.0028162 |
2 |
0.0001045 |
02/08 |
1.011493 |
132 |
125 |
0.0001921 |
0.0000686 |
0.0067837 |
0.0051480 |
0.0004435 |
0.0001584 |
0.0156582 |
0.0078426 |
2 |
0.0002985 |
03/08 |
0.992491 |
138 |
118 |
0.0000746 |
0.0000266 |
0.0026830 |
0.0020303 |
0.0002745 |
0.0000980 |
0.0098776 |
0.0049332 |
2 |
0.0001905 |
04/08 |
0.993129 |
132 |
120 |
0.0001230 |
0.0000439 |
0.0044247 |
0.0033486 |
0.0002863 |
0.0001023 |
0.0102965 |
0.0051429 |
2 |
0.0001929 |
05/08 |
1.004892 |
136 |
116 |
0.0000926 |
0.0000331 |
0.0032893 |
0.0024937 |
0.0004777 |
0.0001706 |
0.0169785 |
0.0084955 |
2 |
0.0003346 |
06/08 |
0.994063 |
142 |
123 |
0.0000558 |
0.0000199 |
0.0020051 |
0.0015177 |
0.0001776 |
0.0000634 |
0.0063791 |
0.0031867 |
2 |
0.0001224 |
07/08 |
0.992498 |
136 |
125 |
0.0000822 |
0.0000294 |
0.0029576 |
0.0022381 |
0.0002094 |
0.0000748 |
0.0075368 |
0.0037641 |
2 |
0.0001423 |
08/08 |
0.992270 |
130 |
115 |
0.0000515 |
0.0000184 |
0.0018537 |
0.0014027 |
0.0001665 |
0.0000595 |
0.0059940 |
0.0029935 |
2 |
0.0001149 |
09/08 |
1.002603 |
136 |
121 |
0.0000821 |
0.0000293 |
0.0029236 |
0.0022157 |
0.0003328 |
0.0001189 |
0.0118565 |
0.0059306 |
2 |
0.0002318 |
10/08 |
0.994493 |
128 |
117 |
0.0000667 |
0.0000238 |
0.0023954 |
0.0018132 |
0.0001429 |
0.0000510 |
0.0051309 |
0.0025633 |
2 |
0.0000954 |
11/08 |
0.992017 |
118 |
104 |
0.0000842 |
0.0000301 |
0.0030309 |
0.0022933 |
0.0001962 |
0.0000701 |
0.0070644 |
0.0035279 |
2 |
0.0001322 |
01/09 |
0.994216 |
148 |
131 |
0.0000830 |
0.0000297 |
0.0029832 |
0.0022580 |
0.0001551 |
0.0000554 |
0.0055712 |
0.0027832 |
2 |
0.0001015 |
02/09 |
0.992251 |
104 |
88 |
0.0000947 |
0.0000338 |
0.0034097 |
0.0025801 |
0.0002846 |
0.0001017 |
0.0102451 |
0.0051165 |
2 |
0.0001956 |
03/09 |
0.991875 |
126 |
108 |
0.0001271 |
0.0000454 |
0.0045777 |
0.0034637 |
0.0002067 |
0.0000738 |
0.0074421 |
0.0037165 |
2 |
0.0001316 |
04/09 |
0.993654 |
134 |
114 |
0.0001166 |
0.0000416 |
0.0041899 |
0.0031711 |
0.0002043 |
0.0000730 |
0.0073417 |
0.0036673 |
2 |
0.0001322 |
05/09 |
1.011035 |
128 |
104 |
0.0002388 |
0.0000853 |
0.0084361 |
0.0064016 |
0.0003554 |
0.0001269 |
0.0125542 |
0.0062875 |
2 |
0.0002211 |
06/09 |
0.992104 |
116 |
106 |
0.0001005 |
0.0000359 |
0.0036178 |
0.0027375 |
0.0003169 |
0.0001132 |
0.0114088 |
0.0056976 |
2 |
0.0002184 |
07/09 |
0.992720 |
144 |
140 |
0.0001579 |
0.0000564 |
0.0056815 |
0.0042995 |
0.0002916 |
0.0001042 |
0.0104923 |
0.0052404 |
2 |
0.0001905 |
08/09 |
0.993139 |
110 |
102 |
0.0001175 |
0.0000420 |
0.0042242 |
0.0031969 |
0.0003603 |
0.0001287 |
0.0129577 |
0.0064721 |
2 |
0.0002479 |
09/09 |
1.005276 |
112 |
108 |
0.0001100 |
0.0000393 |
0.0039070 |
0.0029622 |
0.0003522 |
0.0001258 |
0.0125134 |
0.0062617 |
2 |
0.0002429 |
10/09 |
0.992912 |
122 |
111 |
0.0000705 |
0.0000252 |
0.0025365 |
0.0019195 |
0.0002122 |
0.0000758 |
0.0076315 |
0.0038117 |
2 |
0.0001458 |
11/09 |
0.994031 |
128 |
118 |
0.0000718 |
0.0000256 |
0.0025784 |
0.0019516 |
0.0001639 |
0.0000585 |
0.0058883 |
0.0029415 |
2 |
0.0001102 |
01/10 |
0.994752 |
144 |
136 |
0.0000773 |
0.0000276 |
0.0027765 |
0.0021017 |
0.0001787 |
0.0000638 |
0.0064144 |
0.0032046 |
2 |
0.0001203 |
02/10 |
0.993181 |
108 |
98 |
0.0001471 |
0.0000525 |
0.0052893 |
0.0040029 |
0.0001693 |
0.0000605 |
0.0060884 |
0.0030410 |
2 |
0.0000945 |
03/10 |
0.992665 |
140 |
127 |
0.0001714 |
0.0000612 |
0.0061683 |
0.0046678 |
0.0002378 |
0.0000849 |
0.0085559 |
0.0042732 |
2 |
0.0001447 |
04/10 |
0.995502 |
142 |
128 |
0.0001175 |
0.0000419 |
0.0042138 |
0.0031901 |
0.0002320 |
0.0000829 |
0.0083248 |
0.0041596 |
2 |
0.0001532 |
05/10 |
1.002851 |
130 |
119 |
0.0001195 |
0.0000427 |
0.0042555 |
0.0032253 |
0.0002971 |
0.0001061 |
0.0105815 |
0.0052930 |
2 |
0.0002014 |
06/10 |
0.992607 |
106 |
99 |
0.0001228 |
0.0000438 |
0.0044172 |
0.0033427 |
0.0002226 |
0.0000795 |
0.0080092 |
0.0040001 |
2 |
0.0001449 |
07/10 |
0.992871 |
160 |
150 |
0.0001438 |
0.0000513 |
0.0051712 |
0.0039134 |
0.0003732 |
0.0001333 |
0.0134258 |
0.0067057 |
2 |
0.0002539 |
08/10 |
0.993235 |
104 |
93 |
0.0000895 |
0.0000320 |
0.0032182 |
0.0024356 |
0.0002458 |
0.0000878 |
0.0088399 |
0.0044154 |
2 |
0.0001680 |
09/10 |
1.012328 |
112 |
105 |
0.0000870 |
0.0000311 |
0.0030692 |
0.0023295 |
0.0003395 |
0.0001213 |
0.0119781 |
0.0060001 |
2 |
0.0002361 |
10/10 |
0.992308 |
128 |
115 |
0.0000606 |
0.0000216 |
0.0021811 |
0.0016504 |
0.0001635 |
0.0000584 |
0.0058845 |
0.0029388 |
2 |
0.0001116 |
11/10 |
0.994683 |
120 |
108 |
0.0001127 |
0.0000402 |
0.0040450 |
0.0030620 |
0.0001597 |
0.0000570 |
0.0057339 |
0.0028647 |
2 |
0.0000979 |
Table 3: Comparison of results from the hydrostatic balance (BH) and from the electronic densimeter (ED)
Density – Hydrostatic balance |
Density – Frequency oscillator |
Comparison |
||||||
Sample |
Average value |
Total values |
Selected values |
Sample |
Average value |
Total values |
Selected values |
(BH-DE) |
01/08 |
0.995491 |
130 |
120 |
01/08 |
0.995504 |
114 |
108 |
-0.000013 |
02/08 |
1.011475 |
146 |
125 |
02/08 |
1.011493 |
132 |
125 |
-0.000018 |
03/08 |
0.992473 |
174 |
161 |
03/08 |
0.992491 |
138 |
118 |
-0.000018 |
04/08 |
0.993147 |
172 |
155 |
04/08 |
0.993129 |
132 |
120 |
0.000018 |
05/08 |
1.004836 |
150 |
138 |
05/08 |
1.004892 |
136 |
116 |
-0.000056 |
06/08 |
0.993992 |
152 |
136 |
06/08 |
0.994063 |
142 |
123 |
-0.000071 |
07/08 |
0.992447 |
162 |
150 |
07/08 |
0.992498 |
136 |
125 |
-0.000051 |
08/08 |
0.992210 |
162 |
151 |
08/08 |
0.992270 |
130 |
115 |
-0.000060 |
09/08 |
1.002600 |
148 |
131 |
09/08 |
1.002603 |
136 |
121 |
-0.000003 |
10/08 |
0.994482 |
174 |
152 |
10/08 |
0.994493 |
128 |
117 |
-0.000011 |
11/08 |
0.992010 |
136 |
125 |
11/08 |
0.992017 |
118 |
104 |
-0.000007 |
01/09 |
0.994184 |
174 |
152 |
01/09 |
0.994216 |
148 |
131 |
-0.000031 |
02/09 |
0.992266 |
118 |
101 |
02/09 |
0.992251 |
104 |
88 |
0.000015 |
03/09 |
0.991886 |
164 |
135 |
03/09 |
0.991875 |
126 |
108 |
0.000011 |
04/09 |
0.993632 |
180 |
150 |
04/09 |
0.993654 |
134 |
114 |
-0.000022 |
05/09 |
1.011061 |
116 |
100 |
05/09 |
1.011035 |
128 |
104 |
0.000026 |
06/09 |
0.992063 |
114 |
105 |
06/09 |
0.992104 |
116 |
106 |
-0.000041 |
07/09 |
0.992708 |
172 |
155 |
07/09 |
0.992720 |
144 |
140 |
-0.000012 |
08/09 |
0.993064 |
136 |
127 |
08/09 |
0.993139 |
110 |
102 |
-0.000075 |
09/09 |
1.005285 |
118 |
110 |
09/09 |
1.005276 |
112 |
108 |
0.000009 |
10/09 |
0.992905 |
150 |
132 |
10/09 |
0.992912 |
122 |
111 |
-0.000008 |
11/09 |
0.994016 |
142 |
127 |
11/09 |
0.994031 |
128 |
118 |
-0.000015 |
01/10 |
0.994734 |
170 |
152 |
01/10 |
0.994752 |
144 |
136 |
-0.000018 |
02/10 |
0.993177 |
120 |
110 |
02/10 |
0.993181 |
108 |
98 |
-0.000005 |
03/10 |
0.992799 |
148 |
136 |
03/10 |
0.992665 |
140 |
127 |
0.000134 |
04/10 |
0.995420 |
172 |
157 |
04/10 |
0.995502 |
142 |
128 |
-0.000082 |
05/10 |
1.002963 |
120 |
108 |
05/10 |
1.002851 |
130 |
119 |
0.000112 |
06/10 |
0.992546 |
120 |
113 |
06/10 |
0.992607 |
106 |
99 |
-0.000061 |
07/10 |
0.992831 |
174 |
152 |
07/10 |
0.992871 |
160 |
150 |
-0.000040 |
08/10 |
0.993184 |
144 |
130 |
08/10 |
0.993235 |
104 |
93 |
-0.000052 |
09/10 |
1.012293 |
114 |
103 |
09/10 |
1.012328 |
112 |
105 |
-0.000035 |
10/10 |
0.992289 |
154 |
136 |
10/10 |
0.992308 |
128 |
115 |
-0.000019 |
11/10 |
0.994649 |
130 |
112 |
11/10 |
0.994683 |
120 |
108 |
-0.000035 |
average |
(BH-DE) |
-0.0000162 |
||||||
standard deviation |
(BH-DE) |
0.0000447 |
Table 4: Precision parameters
Hydrostatic balance (BH) |
Electronic densimeter (ED) |
|
No. of selected values |
4347 |
3800 |
min |
0.99189 g/cm3 |
0.99187 g/cm3 |
max |
1.01229 g/cm3 |
1.01233 g/cm3 |
R |
0.00067 g/cm3 |
0.00025 g/cm3 |
sR |
0.00024 g/cm3 |
0.000091 g/cm3 |
R% |
0.067% |
0.025% |
r |
0.00025 g/cm3 |
0.00011 g/cm3 |
sr |
0.000090 g/cm3 |
0.000038 g/cm3 |
r% |
0.025% |
0.011% |
Key:
n: number of selected values
min: lower limit of the measurement range
max: upper limit of the measurement range
r: repeatability
sr: repeatability standard deviation
r%: relative repeatability (r x 100 / average value)
R: reproducibility
sR: reproducibility standard deviation
R%: relative reproducibility (R x 100 / average value)
Bibliography
- JAULMES, P., OIV Bulletin, 26, No. 274, 1953, p. 6.
- JAULMES, P. and BRUN, S., Trav. Soc. Pharm., Montpellier, 16, 1956, p.115;
20, 1960, p. 137; Ann. Fals. Exp. Chim., 46, 1963, pp. 129 and 143.
BRUN, S. and TEP, Y., Ann. Fals. Exp. Chim., 37‑40; OIV, FV, No. 539, 1975.
Evaluation by refractometry of the sugar concentration in grape musts, concentrated grape musts and rectified concentrated grape musts (Type-I)
OIV-MA-AS2-02 Évaluation by refractometry of the sugar concentration in grape musts, concentrated grape musts and rectified concentrated grape musts
Type I method
- Principle
The refractive index at 20°C, expressed either as an absolute value or as a percentage by mass of sucrose, is given in the appropriate table to provide a means of obtaining the sugar concentration in grams per liter and in grams per kilogram for grape musts, concentrated grape musts and rectified concentrated grape musts.
- Apparatus
Abbe refractometer
The refractometer used must be fitted with a scale giving:
- either percentage by mass of sucrose to 0.1%;
- or refractive indices to four decimal places.
The refractometer must be equipped with a thermometer having a scale extending at least from +15°C to +25°C and with a system for circulating water that will enable measurements to be made at a temperature of 20 ± 5°C. The operating instructions for this instrument must be strictly adhered to, particularly with regard to calibration and the light source.
-
Preparation of the sample
- Must and concentrated must
Pass the must, if necessary, through a dry gauze folded into four and, after discarding the first drops of the filtrate, carry out the determination on the filtered product.
3.2. Rectified concentrated must
Depending on the concentration, use either the rectified concentrated must itself or a solution obtained by making up 200 g of rectified concentrated must to 500 g with water, all weighings being carried out accurately.
- Procedure
Bring the sample to a temperature close to 20°C.
Place a small test sample on the lower prism of the refractometer, taking care (because the prisms are pressed firmly against each other) that this test sample covers the glass surface uniformly. Carry out the measurement in accordance with the operating instructions of the instrument used.
Read the percentage by mass of sucrose to within 0.1 or read the refractive index to four decimal places.
Carry out at least two determinations on the same prepared sample. Note the temperature t°C.
- Calculation
5.1. Temperature correction
- Instruments graduated in percentage by mass of sucrose: use Table I to obtain the temperature correction.
-
Instruments graduated in refractive index: find the index measured at t°C in Table II to obtain (column 1) the corresponding value of the percentage by mass of sucrose at t°C. This value is corrected for temperature and expressed as a concentration at 20°C by means of Table I.
- Sugar concentration in must and concentrated must
Find the percentage by mass of sucrose at 20°C in Table II and read from the same row the sugar concentration in grams per liter and grams per kilogram. The sugar concentration is expressed in terms of invert sugar to one decimal place.
5.3. Sugar concentration in rectified concentrated must
Find the percentage by mass of sucrose at 20°C in Table III and read from the same row the sugar concentration in grams per liter and grams per kilogram. The sugar concentration is expressed in terms of invert sugar to one decimal place. If the measurement was made on diluted rectified concentrated must, multiply the result by the dilution factor.
5.4. Refractive index of must, concentrated must and rectified concentrated must
Find the percentage by mass of sucrose at 20°C in Table II and read from the same row the refractive index at 20°C. This index is expressed to four decimal places.
Table I Correction to be made in the case where the percentage by mass of saccharose was determined at a temperature different by 20°C.
Temperature |
Percentage by mass measured in % |
|||||||||||||||||||||||||
°C |
||||||||||||||||||||||||||
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
50 |
55 |
60 |
65 |
70 |
75 |
|||||||||||||
5 |
–0,82 |
–0,87 |
–0,92 |
–0,95 |
–0,99 |
|||||||||||||||||||||
6 |
–0,80 |
–0,82 |
–0,87 |
–0,90 |
–0,94 |
|||||||||||||||||||||
7 |
–0,74 |
–0,78 |
–0,82 |
–0,84 |
–0,88 |
|||||||||||||||||||||
8 |
–0,69 |
–0,73 |
–0,76 |
–0,79 |
–0,82 |
|||||||||||||||||||||
9 |
–0,64 |
–0,67 |
–0,71 |
–0,73 |
–0,75 |
|||||||||||||||||||||
10 |
–0,59 |
–0,62 |
–0,65 |
–0,67 |
–0,69 |
–0,71 |
–0,72 |
–0,73 |
–0,74 |
–0,75 |
–0,75 |
–0,75 |
–0,75 |
–0,75 |
||||||||||||
11 |
–0,54 |
–0,57 |
–0,59 |
–0,61 |
–0,63 |
–0,64 |
–0,65 |
–0,66 |
–0,67 |
–0,68 |
–0,68 |
–0,68 |
–0,68 |
–0,67 |
||||||||||||
12 |
–0,49 |
–0,51 |
–0,53 |
–0,55 |
–0,56 |
–0,57 |
–0,58 |
–0,59 |
–0,60 |
–0,60 |
–0,61 |
–0,61 |
–0,60 |
–0,60 |
||||||||||||
13 |
–0,43 |
–0,45 |
–0,47 |
–0,48 |
–0,50 |
–0,51 |
–0,52 |
–0,52 |
–0,53 |
–0,53 |
–0,53 |
–0,53 |
–0,53 |
–0,53 |
||||||||||||
14 |
–0,38 |
–0,39 |
–0,40 |
–0,42 |
–0,43 |
–0,44 |
–0,44 |
–0,45 |
–0,45 |
–0,46 |
–0,46 |
–0,46 |
–0,46 |
–0,45 |
||||||||||||
15 |
–0,32 |
–0,33 |
–0,34 |
–0,35 |
–0,36 |
–0,37 |
–0,37 |
–0,38 |
–0,38 |
–0,38 |
–0,38 |
–0,38 |
–0,38 |
–0,38 |
||||||||||||
16 |
–0,26 |
–0,27 |
–0,28 |
–0,28 |
–0,29 |
–0,30 |
–0,30 |
–0,30 |
–0,31 |
–0,31 |
–0,31 |
–0,31 |
–0,31 |
–0,30 |
||||||||||||
17 |
–0,20 |
–0,20 |
–0,21 |
–0,21 |
–0,22 |
–0,22 |
–0,23 |
–0,23 |
–0,23 |
–0,23 |
–0,23 |
–0,23 |
–0,23 |
–0,23 |
||||||||||||
18 |
–0,13 |
–0,14 |
–0,14 |
–0,14 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
–0,15 |
||||||||||||
19 |
–0,07 |
–0,07 |
–0,07 |
–0,07 |
–0,07 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
–0,08 |
||||||||||||
20 |
0 |
R É F É R E N |
C E |
0 |
||||||||||||||||||||||
21 |
+0,07 |
+0,07 |
+0,07 |
+0,07 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
+0,08 |
||||||||||||
22 |
+0,14 |
+0,14 |
+0,15 |
+0,15 |
+0,15 |
+0,15 |
+0,16 |
+0,16 |
+0,16 |
+0,16 |
+0,16 |
+0,16 |
+0,15 |
+0,15 |
||||||||||||
23 |
+0,21 |
+0,22 |
+0,22 |
+0,23 |
+0,23 |
+0,23 |
+0,23 |
+0,24 |
+0,24 |
+0,24 |
+0,24 |
+0,23 |
+0,23 |
+0,23 |
||||||||||||
24 |
+0,29 |
+0,29 |
+0,30 |
+0,30 |
+0,31 |
+0,31 |
+0,31 |
+0,32 |
+0,32 |
+0,32 |
+0,32 |
+0,31 |
+0,31 |
+0,31 |
||||||||||||
25 |
+0,36 |
+0,37 |
+0,38 |
+0,38 |
+0,39 |
+0,39 |
+0,40 |
+0,40 |
+0,40 |
+0,40 |
+0,40 |
+0,39 |
+0,39 |
+0,39 |
||||||||||||
26 |
+0,44 |
+0,45 |
+0,46 |
+0,46 |
+0,47 |
+0,47 |
+0,48 |
+0,48 |
+0,48 |
+0,48 |
+0,48 |
+0,47 |
+0,47 |
+0,46 |
||||||||||||
27 |
+0,52 |
+0,53 |
+0,54 |
+0,55 |
+0,55 |
+0,56 |
+0,56 |
+0,56 |
+0,56 |
+0,56 |
+0,56 |
+0,55 |
+0,55 |
+0,54 |
||||||||||||
28 |
+0,60 |
+0,61 |
+0,62 |
+0,63 |
+0,64 |
+0,64 |
+0,64 |
+0,65 |
+0,65 |
+0,64 |
+0,64 |
+0,64 |
+0,63 |
+0,62 |
||||||||||||
29 |
+0,68 |
+0,69 |
+0,70 |
+0,71 |
+0,72 |
+0,73 |
+0,73 |
+0,73 |
+0,73 |
+0,73 |
+0,72 |
+0,72 |
+0,71 |
+0,70 |
||||||||||||
30 |
+0,77 |
+0,78 |
+0,79 |
+0,80 |
+0,81 |
+0,81 |
+0,81 |
+0,82 |
+0,81 |
+0,81 |
+0,81 |
+0,80 |
+0,79 |
+0,78 |
||||||||||||
31 |
+0,85 |
+0,87 |
+0,88 |
+0,89 |
+0,89 |
+0,90 |
+0,90 |
+0,90 |
+0,90 |
+0,90 |
+0,89 |
+0,88 |
+0,87 |
+0,86 |
||||||||||||
32 |
+0,94 |
+0,95 |
+0,96 |
+0,97 |
+0,98 |
+0,99 |
+0,99 |
+0,99 |
+0,99 |
+0,98 |
+0,97 |
+0,96 |
+0,95 |
+0,94 |
||||||||||||
33 |
+1,03 |
+1,04 |
+1,05 |
+1,06 |
+1,07 |
+1,08 |
+1,08 |
+1,08 |
+1,07 |
+1,07 |
+1,06 |
+1,05 |
+1,03 |
+1,02 |
||||||||||||
34 |
+1,12 |
+1,19 |
+1,15 |
+1,15 |
+1,16 |
+1,17 |
+1,17 |
+1,17 |
+1,16 |
+1,15 |
+1,14 |
+1,13 |
+1,12 |
+1,10 |
||||||||||||
35 |
+1,22 |
+1,23 |
+1,24 |
+1,25 |
+1,25 |
+1,26 |
+1,26 |
+1,25 |
+1,25 |
+1,24 |
+1,23 |
+1,21 |
+1,20 |
+1,18 |
||||||||||||
36 |
+1,31 |
+1,32 |
+1,33 |
+1,34 |
+1,35 |
+1,35 |
+1,35 |
+1,35 |
+1,34 |
+1,33 |
+1,32 |
+1,30 |
+1,28 |
+1,26 |
||||||||||||
37 |
+1,41 |
+1,42 |
+1,43 |
+1,44 |
+1,44 |
+1,44 |
+1,44 |
+1,44 |
+1,43 |
+1,42 |
+1,40 |
+1,38 |
+1,36 |
+1,34 |
||||||||||||
38 |
+1,51 |
+1,52 |
+1,53 |
+1,53 |
+1,54 |
+1,54 |
+1,53 |
+1,53 |
+1,52 |
+1,51 |
+1,49 |
+1,47 |
+1,45 |
+1,42 |
||||||||||||
39 |
+1,61 |
+1,62 |
+1,62 |
+1,63 |
+1,63 |
+1,63 |
+1,63 |
+1,62 |
+1,61 |
+1,60 |
+1,58 |
+1,56 |
+1,53 |
+1,50 |
||||||||||||
40 |
+1,71 |
+1,72 |
+1,72 |
+1,73 |
+1,73 |
+1,73 |
+1,72 |
+1,71 |
+1,70 |
+1,69 |
+1,67 |
+1,64 |
+1,62 |
+1,59 |
||||||||||||
It is preferable that the variations in temperature in relation to 20°C do not exceed 5°C.
TABLE II
Table giving the sugar content of musts and concentrated musts in grammes per litre and in grammes per kilogramme, determined using a graduated refractometer, either in percentage by mass of saccharose at 20°C, or refractive index at 20°C. The mass density at 20°C is also given.
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
10.0 |
1.34782 |
1.0391 |
82.2 |
79.1 |
4.89 |
10.1 |
1.34798 |
1.0395 |
83.3 |
80.1 |
4.95 |
10.2 |
1.34813 |
1.0399 |
84.3 |
81.1 |
5.01 |
10.3 |
1.34829 |
1.0403 |
85.4 |
82.1 |
5.08 |
10.4 |
1.34844 |
1.0407 |
86.5 |
83.1 |
5.14 |
10.5 |
1.34860 |
1.0411 |
87.5 |
84.1 |
5.20 |
10.6 |
1.34875 |
1.0415 |
88.6 |
85.0 |
5.27 |
10.7 |
1.34891 |
1.0419 |
89.6 |
86.0 |
5.32 |
10.8 |
1.34906 |
1.0423 |
90.7 |
87.0 |
5.39 |
10.9 |
1.34922 |
1.0427 |
91.8 |
88.0 |
5.46 |
11.0 |
1.34937 |
1.0431 |
92.8 |
89.0 |
5.52 |
11.1 |
1.34953 |
1.0436 |
93.9 |
90.0 |
5.58 |
11.2 |
1.34968 |
1.0440 |
95.0 |
91.0 |
5.65 |
11.3 |
1.34984 |
1.0444 |
96.0 |
92.0 |
5.71 |
11.4 |
1.34999 |
1.0448 |
97.1 |
92.9 |
5.77 |
11.5 |
1.35015 |
1.0452 |
98.2 |
93.9 |
5.84 |
11.6 |
1.35031 |
1.0456 |
99.3 |
94.9 |
5.90 |
11.7 |
1.35046 |
1.0460 |
100.3 |
95.9 |
5.96 |
11.8 |
1.35062 |
1.0464 |
101.4 |
96.9 |
6.03 |
11.9 |
1.35077 |
1.0468 |
102.5 |
97.9 |
6.09 |
12.0 |
1.35093 |
1.0472 |
103.5 |
98.9 |
6.15 |
12.1 |
1.35109 |
1.0477 |
104.6 |
99.9 |
6.22 |
12.2 |
1.35124 |
1.0481 |
105.7 |
100.8 |
6.28 |
12.3 |
1.35140 |
1.0485 |
106.8 |
101.8 |
6.35 |
12.4 |
1.35156 |
1.0489 |
107.8 |
102.8 |
6.41 |
12.5 |
1.35171 |
1.0493 |
108.9 |
103.8 |
6.47 |
12.6 |
1.35187 |
1.0497 |
110.0 |
104.8 |
6.54 |
12.7 |
1.35203 |
1.0501 |
111.1 |
105.8 |
6.60 |
12.8 |
1.35219 |
1.0506 |
112.2 |
106.8 |
6.67 |
12.9 |
1.35234 |
1.0510 |
113.2 |
107.8 |
6.73 |
13.0 |
1.35250 |
1.0514 |
114.3 |
108.7 |
6.79 |
13.1 |
1.35266 |
1.0518 |
115.4 |
109.7 |
6.86 |
13.2 |
1.35282 |
1.0522 |
116.5 |
110.7 |
6.92 |
13.3 |
1.35298 |
1.0527 |
117.6 |
111.7 |
6.99 |
13.4 |
1.35313 |
1.0531 |
118.7 |
112.7 |
7.05 |
13.5 |
1.35329 |
1.0535 |
119.7 |
113.7 |
7.11 |
13.6 |
1.35345 |
1.0539 |
120.8 |
114.7 |
7.18 |
13.7 |
1.35361 |
1.0543 |
121.9 |
115.6 |
7.24 |
13.8 |
1.35377 |
1.0548 |
123.0 |
116.6 |
7.31 |
13.9 |
1.35393 |
1.0552 |
124.1 |
117.6 |
7.38 |
14.0 |
1.35408 |
1.0556 |
125.2 |
118.6 |
7.44 |
14.1 |
1.35424 |
1.0560 |
126.3 |
119.6 |
7.51 |
14.2 |
1.35440 |
1.0564 |
127.4 |
120.6 |
7.57 |
14.3 |
1.35456 |
1.0569 |
128.5 |
121.6 |
7.64 |
14.4 |
1.35472 |
1.0573 |
129.6 |
122.5 |
7.70 |
14.5 |
1.35488 |
1.0577 |
130.6 |
123.5 |
7.76 |
14.6 |
1.35504 |
1.0581 |
131.7 |
124.5 |
7.83 |
14.7 |
1.35520 |
1.0586 |
132.8 |
125.5 |
7.89 |
14.8 |
1.35536 |
1.0590 |
133.9 |
126.5 |
7.96 |
14.9 |
1.35552 |
1.0594 |
135.0 |
127.5 |
8.02 |
TABLE II - (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
15.0 |
1.35568 |
1.0598 |
136.1 |
128.4 |
8.09 |
15.1 |
1.35584 |
1.0603 |
137.2 |
129.4 |
8.15 |
15.2 |
1.35600 |
1.0607 |
138.3 |
130.4 |
8.22 |
15.3 |
1.35616 |
1.0611 |
139.4 |
131.4 |
8.28 |
15.4 |
1.35632 |
1.0616 |
140.5 |
132.4 |
8.35 |
15.5 |
1.35648 |
1.0620 |
141.6 |
133.4 |
8.42 |
15.6 |
1.35664 |
1.0624 |
142.7 |
134.3 |
8.48 |
15.7 |
1.35680 |
1.0628 |
143.8 |
135.3 |
8.55 |
15.8 |
1.35696 |
1.0633 |
144.9 |
136.3 |
8.61 |
15.9 |
1.35713 |
1.0637 |
146.0 |
137.3 |
8.68 |
16.0 |
1.35729 |
1.0641 |
147.1 |
138.3 |
8.74 |
16.1 |
1.35745 |
1.0646 |
148.2 |
139.3 |
8.81 |
16.2 |
1.35761 |
1.0650 |
149.3 |
140.2 |
8.87 |
16.3 |
1.35777 |
1.0654 |
150.5 |
141.2 |
8.94 |
16.4 |
1.35793 |
1.0659 |
151.6 |
142.2 |
9.01 |
16.5 |
1.35810 |
1.0663 |
152.7 |
143.2 |
9.07 |
16.6 |
1.35826 |
1.0667 |
153.8 |
144.2 |
9.14 |
16.7 |
1.35842 |
1.0672 |
154.9 |
145.1 |
9.21 |
16.8 |
1.35858 |
1.0676 |
156.0 |
146.1 |
9.27 |
16.9 |
1.35874 |
1.0680 |
157.1 |
147.1 |
9.34 |
17.0 |
1.35891 |
1.0685 |
158.2 |
148.1 |
9.40 |
17.1 |
1.35907 |
1.0689 |
159.3 |
149.1 |
9.47 |
17.2 |
1.35923 |
1.0693 |
160.4 |
150.0 |
9.53 |
17.3 |
1.35940 |
1.0698 |
161.6 |
151.0 |
9.60 |
17.4 |
1.35956 |
1.0702 |
162.7 |
152.0 |
9.67 |
17.5 |
1.35972 |
1.0707 |
163.8 |
153.0 |
9.73 |
17.6 |
1.35989 |
1.0711 |
164.9 |
154.0 |
9.80 |
17.7 |
1.36005 |
1.0715 |
166.0 |
154.9 |
9.87 |
17.8 |
1.36021 |
1.0720 |
167.1 |
155.9 |
9.93 |
17.9 |
1.36038 |
1.0724 |
168.3 |
156.9 |
10.00 |
18.0 |
1.36054 |
1.0729 |
169.4 |
157.9 |
10.07 |
18.1 |
1.36070 |
1.0733 |
170.5 |
158.9 |
10.13 |
18.2 |
1.36087 |
1.0737 |
171.6 |
159.8 |
10.20 |
18.3 |
1.36103 |
1.0742 |
172.7 |
160.8 |
10.26 |
18.4 |
1.36120 |
1.0746 |
173.9 |
161.8 |
10.33 |
18.5 |
1.36136 |
1.0751 |
175.0 |
162.8 |
10.40 |
18.6 |
1.36153 |
1.0755 |
176.1 |
163.7 |
10.47 |
18.7 |
1.36169 |
1.0760 |
177.2 |
164.7 |
10.53 |
18.8 |
1.36185 |
1.0764 |
178.4 |
165.7 |
10.60 |
18.9 |
1.36202 |
1.0768 |
179.5 |
166.7 |
10.67 |
19.0 |
1.36219 |
1.0773 |
180.6 |
167.6 |
10.73 |
19.1 |
1.36235 |
1.0777 |
181.7 |
168.6 |
10.80 |
19.2 |
1.36252 |
1.0782 |
182.9 |
169.6 |
10.87 |
19.3 |
1.36268 |
1.0786 |
184.0 |
170.6 |
10.94 |
19.4 |
1.36285 |
1.0791 |
185.1 |
171.5 |
11.00 |
19.5 |
1.36301 |
1.0795 |
186.2 |
172.5 |
11.07 |
19.6 |
1.36318 |
1.0800 |
187.4 |
173.5 |
11.14 |
19.7 |
1.36334 |
1.0804 |
188.5 |
174.5 |
11.20 |
19.8 |
1.36351 |
1.0809 |
189.6 |
175.4 |
11.27 |
19.9 |
1.36368 |
1.0813 |
190.8 |
176.4 |
11.34 |
TABLE II - (continued
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
20.0 |
1.36384 |
1.0818 |
191.9 |
177.4 |
11.40 |
20.1 |
1.36401 |
1.0822 |
193.0 |
178.4 |
11.47 |
20.2 |
1.36418 |
1.0827 |
194.2 |
179.3 |
11.54 |
20.3 |
1.36434 |
1.0831 |
195.3 |
180.3 |
11.61 |
20.4 |
1.36451 |
1.0836 |
196.4 |
181.3 |
11.67 |
20.5 |
1.36468 |
1.0840 |
197.6 |
182.3 |
11.74 |
20.6 |
1.36484 |
1.0845 |
198.7 |
183.2 |
11.81 |
20.7 |
1.36501 |
1.0849 |
199.8 |
184.2 |
11.87 |
20.8 |
1.36518 |
1.0854 |
201.0 |
185.2 |
11.95 |
20.9 |
1.36535 |
1.0858 |
202.1 |
186.1 |
12.01 |
21.0 |
1.36551 |
1.0863 |
203.3 |
187.1 |
12.08 |
21.1 |
1.36568 |
1.0867 |
204.4 |
188.1 |
12.15 |
21.2 |
1.36585 |
1.0872 |
205.5 |
189.1 |
12.21 |
21.3 |
1.36602 |
1.0876 |
206.7 |
190.0 |
12.28 |
21.4 |
1.36619 |
1.0881 |
207.8 |
191.0 |
12.35 |
21.5 |
1.36635 |
1.0885 |
209.0 |
192.0 |
12.42 |
21.6 |
1.36652 |
1.0890 |
210.1 |
192.9 |
12.49 |
21.7 |
1.36669 |
1.0895 |
211.3 |
193.9 |
12.56 |
21.8 |
1.36686 |
1.0899 |
212.4 |
194.9 |
12.62 |
21.9 |
1.36703 |
1.0904 |
213.6 |
195.9 |
12.69 |
22.0 |
1.36720 |
1.0908 |
214.7 |
196.8 |
12.76 |
22.1 |
1.36737 |
1.0913 |
215.9 |
197.8 |
12.83 |
22.2 |
1.36754 |
1.0917 |
217.0 |
198.8 |
12.90 |
22.3 |
1.36771 |
1.0922 |
218.2 |
199.7 |
12.97 |
22.4 |
1.36787 |
1.0927 |
219.3 |
200.7 |
13.03 |
22.5 |
1.36804 |
1.0931 |
220.5 |
201.7 |
13.10 |
22.6 |
1.36821 |
1.0936 |
221.6 |
202.6 |
13.17 |
22.7 |
1.36838 |
1.0940 |
222.8 |
203.6 |
13.24 |
22.8 |
1.36855 |
1.0945 |
223.9 |
204.6 |
13.31 |
22.9 |
1.36872 |
1.0950 |
225.1 |
205.5 |
13.38 |
23.0 |
1.36889 |
1.0954 |
226.2 |
206.5 |
13.44 |
23.1 |
1.36906 |
1.0959 |
227.4 |
207.5 |
13.51 |
23.2 |
1.36924 |
1.0964 |
228.5 |
208.4 |
13.58 |
23.3 |
1.36941 |
1.0968 |
229.7 |
209.4 |
13.65 |
23.4 |
1.36958 |
1.0973 |
230.8 |
210.4 |
13.72 |
23.5 |
1.36975 |
1.0977 |
232.0 |
211.3 |
13.79 |
23.6 |
1.36992 |
1.0982 |
233.2 |
212.3 |
13.86 |
23.7 |
1.37009 |
1.0987 |
234.3 |
213.3 |
13.92 |
23.8 |
1.37026 |
1.0991 |
235.5 |
214.2 |
14.00 |
23.9 |
1.37043 |
1.0996 |
236.6 |
215.2 |
14.06 |
24.0 |
1.37060 |
1.1001 |
237.8 |
216.2 |
14.13 |
24.1 |
1.37078 |
1.1005 |
239.0 |
217.1 |
14.20 |
24.2 |
1.37095 |
1.1010 |
240.1 |
218.1 |
14.27 |
24.3 |
1.37112 |
1.1015 |
241.3 |
219.1 |
14.34 |
24.4 |
1.37129 |
1.1019 |
242.5 |
220.0 |
14.41 |
24.5 |
1.37146 |
1.1024 |
243.6 |
221.0 |
14.48 |
24.6 |
1.37164 |
1.1029 |
244.8 |
222.0 |
14.55 |
24.7 |
1.37181 |
1.1033 |
246.0 |
222.9 |
14.62 |
24.8 |
1.37198 |
1.1038 |
247.1 |
223.9 |
14.69 |
24.9 |
1.37216 |
1.1043 |
248.3 |
224.8 |
14.76 |
TABLE II - (continued
|
|
|
TABLE II - (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
35.0 |
1.39032 |
1.1537 |
370.5 |
321.1 |
22.02 |
35.1 |
1.39051 |
1.1542 |
371.8 |
322.1 |
22.10 |
35.2 |
1.39070 |
1.1547 |
373.0 |
323.0 |
22.17 |
35.3 |
1.39088 |
1.1552 |
374.3 |
324.0 |
22.24 |
35.4 |
1.39107 |
1.1557 |
375.5 |
324.9 |
22.32 |
35.5 |
1.39126 |
1.1563 |
376.8 |
325.9 |
22.39 |
35.6 |
1.39145 |
1.1568 |
378.0 |
326.8 |
22.46 |
35.7 |
1.39164 |
1.1573 |
379.3 |
327.8 |
22.54 |
35.8 |
1.39182 |
1.1578 |
380.6 |
328.7 |
22.62 |
35.9 |
1.39201 |
1.1583 |
381.8 |
329.6 |
22.69 |
36.0 |
1.39220 |
1.1588 |
383.1 |
330.6 |
22.77 |
36.1 |
1.39239 |
1.1593 |
384.4 |
331.5 |
22.84 |
36.2 |
1.39258 |
1.1598 |
385.6 |
332.5 |
22.92 |
36.3 |
1.39277 |
1.1603 |
386.9 |
333.4 |
22.99 |
36.4 |
1.39296 |
1.1609 |
388.1 |
334.4 |
23.06 |
36.5 |
1.39314 |
1.1614 |
389.4 |
335.3 |
23.14 |
36.6 |
1.39333 |
1.1619 |
390.7 |
336.3 |
23.22 |
36.7 |
1.39352 |
1.1624 |
392.0 |
337.2 |
23.30 |
36.8 |
1.39371 |
1.1629 |
393.2 |
338.1 |
23.37 |
36.9 |
1.39390 |
1.1634 |
394.5 |
339.1 |
23.45 |
37.0 |
1.39409 |
1.1640 |
395.8 |
340.0 |
23.52 |
37.1 |
1.39428 |
1.1645 |
397.0 |
341.0 |
23.59 |
37.2 |
1.39447 |
1.1650 |
398.3 |
341.9 |
23.67 |
37.3 |
1.39466 |
1.1655 |
399.6 |
342.9 |
23.75 |
37.4 |
1.39485 |
1.1660 |
400.9 |
343.8 |
23.83 |
37.5 |
1.39504 |
1.1665 |
402.1 |
344.7 |
23.90 |
37.6 |
1.39524 |
1.1671 |
403.4 |
345.7 |
23.97 |
37.7 |
1.39543 |
1.1676 |
404.7 |
346.6 |
24.05 |
37.8 |
1.39562 |
1.1681 |
406.0 |
347.6 |
24.13 |
37.9 |
1.39581 |
1.1686 |
407.3 |
348.5 |
24.21 |
38.0 |
1.39600 |
1.1691 |
408.6 |
349.4 |
24.28 |
38.1 |
1.39619 |
1.1697 |
409.8 |
350.4 |
24.35 |
38.2 |
1.39638 |
1.1702 |
411.1 |
351.3 |
24.43 |
38.3 |
1.39658 |
1.1707 |
412.4 |
352.3 |
24.51 |
38.4 |
1.39677 |
1.1712 |
413.7 |
353.2 |
24.59 |
38.5 |
1.39696 |
1.1717 |
415.0 |
354.2 |
24.66 |
38.6 |
1.39715 |
1.1723 |
416.3 |
355.1 |
24.74 |
38.7 |
1.39734 |
1.1728 |
417.6 |
356.0 |
24.82 |
38.8 |
1.39754 |
1.1733 |
418.8 |
357.0 |
24.89 |
38.9 |
1.39773 |
1.1738 |
420.1 |
357.9 |
24.97 |
39.0 |
1.39792 |
1.1744 |
421.4 |
358.9 |
25.04 |
39.1 |
1.39812 |
1.1749 |
422.7 |
359.8 |
25.12 |
39.2 |
1.39831 |
1.1754 |
424.0 |
360.7 |
25.20 |
39.3 |
1.39850 |
1.1759 |
425.3 |
361.7 |
25.28 |
39.4 |
1.39870 |
1.1765 |
426.6 |
362.6 |
25.35 |
39.5 |
1.39889 |
1.1770 |
427.9 |
363.6 |
25.43 |
39.6 |
1.39908 |
1.1775 |
429.2 |
364.5 |
25.51 |
39.7 |
1.39928 |
1.1780 |
430.5 |
365.4 |
25.58 |
39.8 |
1.39947 |
1.1786 |
431.8 |
366.4 |
25.66 |
39.9 |
1.39967 |
1.1791 |
433.1 |
367.3 |
25.74 |
TABLE II - (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
40.0 |
1.39986 |
1.1796 |
434.4 |
368.3 |
25.82 |
40.1 |
1.40006 |
1.1801 |
435.7 |
369.2 |
25.89 |
40.2 |
1.40025 |
1.1807 |
437.0 |
370.1 |
25.97 |
40.3 |
1.40044 |
1.1812 |
438.3 |
371.1 |
26.05 |
40.4 |
1.40064 |
1.1817 |
439.6 |
372.0 |
26.13 |
40.5 |
1.40083 |
1.1823 |
440.9 |
373.0 |
26.20 |
40.6 |
1.40103 |
1.1828 |
442.2 |
373.9 |
26.28 |
40.7 |
1.40123 |
1.1833 |
443.6 |
374.8 |
26.36 |
40.8 |
1.40142 |
1.1839 |
444.9 |
375.8 |
26.44 |
40.9 |
1.40162 |
1.1844 |
446.2 |
376.7 |
26.52 |
41.0 |
1.40181 |
1.1849 |
447.5 |
377.7 |
26.59 |
41.1 |
1.40201 |
1.1855 |
448.8 |
378.6 |
26.67 |
41.2 |
1.40221 |
1.1860 |
450.1 |
379.5 |
26.75 |
41.3 |
1.40240 |
1.1865 |
451.4 |
380.5 |
26.83 |
41.4 |
1.40260 |
1.1871 |
452.8 |
381.4 |
26.91 |
41.5 |
1.40280 |
1.1876 |
454.1 |
382.3 |
26.99 |
41.6 |
1.40299 |
1.1881 |
455.4 |
383.3 |
27.06 |
41.7 |
1.40319 |
1.1887 |
456.7 |
384.2 |
27.14 |
41.8 |
1.40339 |
1.1892 |
458.0 |
385.2 |
27.22 |
41.9 |
1.40358 |
1.1897 |
459.4 |
386.1 |
27.30 |
42.0 |
1.40378 |
1.1903 |
460.7 |
387.0 |
27.38 |
42.1 |
1.40398 |
1.1908 |
462.0 |
388.0 |
27.46 |
42.2 |
1.40418 |
1.1913 |
463.3 |
388.9 |
27.53 |
42.3 |
1.40437 |
1.1919 |
464.7 |
389.9 |
27.62 |
42.4 |
1.40457 |
1.1924 |
466.0 |
390.8 |
27.69 |
42.5 |
1.40477 |
1.1929 |
467.3 |
391.7 |
27.77 |
42.6 |
1.40497 |
1.1935 |
468.6 |
392.7 |
27.85 |
42.7 |
1.40517 |
1.1940 |
470.0 |
393.6 |
27.93 |
42.8 |
1.40537 |
1.1946 |
471.3 |
394.5 |
28.01 |
42.9 |
1.40557 |
1.1951 |
472.6 |
395.5 |
28.09 |
43.0 |
1.40576 |
1.1956 |
474.0 |
396.4 |
28.17 |
43.1 |
1.40596 |
1.1962 |
475.3 |
397.3 |
28.25 |
43.2 |
1.40616 |
1.1967 |
476.6 |
398.3 |
28.32 |
43.3 |
1.40636 |
1.1973 |
478.0 |
399.2 |
28.41 |
43.4 |
1.40656 |
1.1978 |
479.3 |
400.2 |
28.48 |
43.5 |
1.40676 |
1.1983 |
480.7 |
401.1 |
28.57 |
43.6 |
1.40696 |
1.1989 |
482.0 |
402.0 |
28.65 |
43.7 |
1.40716 |
1.1994 |
483.3 |
403.0 |
28.72 |
43.8 |
1.40736 |
1.2000 |
484.7 |
403.9 |
28.81 |
43.9 |
1.40756 |
1.2005 |
486.0 |
404.8 |
28.88 |
44.0 |
1.40776 |
1.2011 |
487.4 |
405.8 |
28.97 |
44.1 |
1.40796 |
1.2016 |
488.7 |
406.7 |
29.04 |
44.2 |
1.40817 |
1.2022 |
490.1 |
407.6 |
29.13 |
44.3 |
1.40837 |
1.2027 |
491.4 |
408.6 |
29.20 |
44.4 |
1.40857 |
1.2032 |
492.8 |
409.5 |
29.29 |
44.5 |
1.40877 |
1.2038 |
494.1 |
410.4 |
29.36 |
44.6 |
1.40897 |
1.2043 |
495.5 |
411.4 |
29.45 |
44.7 |
1.40917 |
1.2049 |
496.8 |
412.3 |
29.52 |
44.8 |
1.40937 |
1.2054 |
498.2 |
413.3 |
29.61 |
44.9 |
1.40958 |
1.2060 |
499.5 |
414.2 |
29.69 |
TABLE II (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
|
|
|
TABLE II - (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
60.0 |
1.44193 |
1.2937 |
716.6 |
553.9 |
42.59 |
60.1 |
1.44216 |
1.2943 |
718.1 |
554.8 |
42.68 |
60.2 |
1.44238 |
1.2949 |
719.6 |
555.7 |
42.77 |
60.3 |
1.44261 |
1.2956 |
721.1 |
556.6 |
42.85 |
60.4 |
1.44284 |
1.2962 |
722.7 |
557.5 |
42.95 |
60.5 |
1.44306 |
1.2968 |
724.2 |
558.4 |
43.04 |
60.6 |
1.44329 |
1.2974 |
725.7 |
559.4 |
43.13 |
60.7 |
1.44352 |
1.2980 |
727.3 |
560.3 |
43.22 |
60.8 |
1.44375 |
1.2986 |
728.8 |
561.2 |
43.31 |
60.9 |
1.44398 |
1.2993 |
730.3 |
562.1 |
43.40 |
61.0 |
1.44420 |
1.2999 |
731.8 |
563.0 |
43.49 |
61.1 |
1.44443 |
1.3005 |
733.4 |
563.9 |
43.59 |
61.2 |
1.44466 |
1.3011 |
734.9 |
564.8 |
43.68 |
61.3 |
1.44489 |
1.3017 |
736.4 |
565.7 |
43.76 |
61.4 |
1.44512 |
1.3024 |
738.0 |
566.6 |
43.86 |
61.5 |
1.44535 |
1.3030 |
739.5 |
567.6 |
43.95 |
61.6 |
1.44558 |
1.3036 |
741.1 |
568.5 |
44.04 |
61.7 |
1.44581 |
1.3042 |
742.6 |
569.4 |
44.13 |
61.8 |
1.44604 |
1.3049 |
744.1 |
570.3 |
44.22 |
61.9 |
1.44627 |
1.3055 |
745.7 |
571.2 |
44.32 |
62.0 |
1.44650 |
1.3061 |
747.2 |
572.1 |
44.41 |
62.1 |
1.44673 |
1.3067 |
748.8 |
573.0 |
44.50 |
62.2 |
1.44696 |
1.3074 |
750.3 |
573.9 |
44.59 |
62.3 |
1.44719 |
1.3080 |
751.9 |
574.8 |
44.69 |
62.4 |
1.44742 |
1.3086 |
753.4 |
575.7 |
44.77 |
62.5 |
1.44765 |
1.3092 |
755.0 |
576.6 |
44.87 |
62.6 |
1.44788 |
1.3099 |
756.5 |
577.5 |
44.96 |
62.7 |
1.44811 |
1.3105 |
758.1 |
578.5 |
45.05 |
62.8 |
1.44834 |
1.3111 |
759.6 |
579.4 |
45.14 |
62.9 |
1.44858 |
1.3118 |
761.2 |
580.3 |
45.24 |
63.0 |
1.44881 |
1.3124 |
762.7 |
581.2 |
45.33 |
63.1 |
1.44904 |
1.3130 |
764.3 |
582.1 |
45.42 |
63.2 |
1.44927 |
1.3137 |
765.8 |
583.0 |
45.51 |
63.3 |
1.44950 |
1.3143 |
767.4 |
583.9 |
45.61 |
63.4 |
1.44974 |
1.3149 |
769.0 |
584.8 |
45.70 |
63.5 |
1.44997 |
1.3155 |
770.5 |
585.7 |
45.79 |
63.6 |
1.45020 |
1.3162 |
772.1 |
586.6 |
45.89 |
63.7 |
1.45043 |
1.3168 |
773.6 |
587.5 |
45.98 |
63.8 |
1.45067 |
1.3174 |
775.2 |
588.4 |
46.07 |
63.9 |
1.45090 |
1.3181 |
776.8 |
589.3 |
46.17 |
64.0 |
1.45113 |
1.3187 |
778.3 |
590.2 |
46.25 |
64.1 |
1.45137 |
1.3193 |
779.9 |
591.1 |
46.35 |
64.2 |
1.45160 |
1.3200 |
781.5 |
592.0 |
46.44 |
64.3 |
1.45184 |
1.3206 |
783.0 |
592.9 |
46.53 |
64.4 |
1.45207 |
1.3213 |
784.6 |
593.8 |
46.63 |
64.5 |
1.45230 |
1.3219 |
786.2 |
594.7 |
46.72 |
64.6 |
1.45254 |
1.3225 |
787.8 |
595.6 |
46.82 |
64.7 |
1.45277 |
1.3232 |
789.3 |
596.5 |
46.91 |
64.8 |
1.45301 |
1.3238 |
790.9 |
597.4 |
47.00 |
64.9 |
1.45324 |
1.3244 |
792.5 |
598.3 |
47.10 |
|
TABLE II - (continued)
Saccharose |
Refractive Index |
Mass |
Sugars in |
Sugars in |
ABV % vol at 20 °C |
% (m/m) |
at 20 °C |
Density at 20 °C |
g/l |
g/kg |
at 20 °C |
70.0 |
1.46546 |
1.3576 |
874.5 |
644.1 |
51.97 |
70.1 |
1.46570 |
1.3583 |
876.1 |
645.0 |
52.07 |
70.2 |
1.46594 |
1.3590 |
877.7 |
645.9 |
52.16 |
70.3 |
1.46619 |
1.3596 |
879.4 |
646.8 |
52.26 |
70.4 |
1.46643 |
1.3603 |
881.0 |
647.7 |
52.36 |
70.5 |
1.46668 |
1.3610 |
882.7 |
648.5 |
52.46 |
70.6 |
1.46692 |
1.3616 |
884.3 |
649.4 |
52.55 |
70.7 |
1.46717 |
1.3623 |
886.0 |
650.3 |
52.65 |
70.8 |
1.46741 |
1.3630 |
887.6 |
651.2 |
52.75 |
70.9 |
1.46766 |
1.3636 |
889.3 |
652.1 |
52.85 |
71.0 |
1.46790 |
1.3643 |
890.9 |
653.0 |
52.95 |
71.1 |
1.46815 |
1.3650 |
892.6 |
653.9 |
53.05 |
71.2 |
1.46840 |
1.3656 |
894.2 |
654.8 |
53.14 |
71.3 |
1.46864 |
1.3663 |
895.9 |
655.7 |
53.24 |
71.4 |
1.46889 |
1.3670 |
897.5 |
656.6 |
53.34 |
71.5 |
1.46913 |
1.3676 |
899.2 |
657.5 |
53.44 |
71.6 |
1.46938 |
1.3683 |
900.8 |
658.3 |
53.53 |
71.7 |
1.46963 |
1.3690 |
902.5 |
659.2 |
53.64 |
71.8 |
1.46987 |
1.3696 |
904.1 |
660.1 |
53.73 |
71.9 |
1.47012 |
1.3703 |
905.8 |
661.0 |
53.83 |
72.0 |
1.47037 |
1.3710 |
907.5 |
661.9 |
53.93 |
72.1 |
1.47062 |
1.3717 |
909.1 |
662.8 |
54.03 |
72.2 |
1.47086 |
1.3723 |
910.8 |
663.7 |
54.13 |
72.3 |
1.47111 |
1.3730 |
912.5 |
664.6 |
54.23 |
72.4 |
1.47136 |
1.3737 |
914.1 |
665.5 |
54.32 |
72.5 |
1.47161 |
1.3743 |
915.8 |
666.3 |
54.43 |
72.6 |
1.47186 |
1.3750 |
917.5 |
667.2 |
54.53 |
72.7 |
1.47210 |
1.3757 |
919.1 |
668.1 |
54.62 |
72.8 |
1.47235 |
1.3764 |
920.8 |
669.0 |
54.72 |
72.9 |
1.47260 |
1.3770 |
922.5 |
669.9 |
54.82 |
73.0 |
1.47285 |
1.3777 |
924.2 |
670.8 |
54.93 |
73.1 |
1.47310 |
1.3784 |
925.8 |
671.7 |
55.02 |
73.2 |
1.47335 |
1.3791 |
927.5 |
672.6 |
55.12 |
73.3 |
1.47360 |
1.3797 |
929.2 |
673.5 |
55.22 |
73.4 |
1.47385 |
1.3804 |
930.9 |
674.3 |
55.32 |
73.5 |
1.47410 |
1.3811 |
932.6 |
675.2 |
55.42 |
73.6 |
1.47435 |
1.3818 |
934.3 |
676.1 |
55.53 |
73.7 |
1.47460 |
1.3825 |
935.9 |
677.0 |
55.62 |
73.8 |
1.47485 |
1.3831 |
937.6 |
677.9 |
55.72 |
73.9 |
1.47510 |
1.3838 |
939.3 |
678.8 |
55.82 |
74.0 |
1.47535 |
1.3845 |
941.0 |
679.7 |
55.92 |
74.1 |
1.47560 |
1.3852 |
942.7 |
680.6 |
56.02 |
74.2 |
1.47585 |
1.3859 |
944.4 |
681.4 |
56.13 |
74.3 |
1.47610 |
1.3865 |
946.1 |
682.3 |
56.23 |
74.4 |
1.47635 |
1.3872 |
947.8 |
683.2 |
56.33 |
74.5 |
1.47661 |
1.3879 |
949.5 |
684.1 |
56.43 |
74.6 |
1.47686 |
1.3886 |
951.2 |
685.0 |
56.53 |
74.7 |
1.47711 |
1.3893 |
952.9 |
685.9 |
56.63 |
74.8 |
1.47736 |
1.3899 |
954.6 |
686.8 |
56.73 |
74.9 |
1.47761 |
1.3906 |
956.3 |
687.7 |
56.83 |
TABLE III: Table giving the sugar concentration in rectified concentrated must
in grams per liter and grams per kilogram.
determined by means of a refractometer graduated
either in percentage by mass of sucrose at 20°C
or in refractive index at 20°C.
TABLE III
Saccharose % (m/m) |
Refractive Index at 20 °C |
Mass Density at 20 °C |
Sugars in g/l |
Sugars in g/kg |
ABV % vol at 20 °C |
50.0 |
1.42008 |
1.2342 |
627.6 |
508.5 |
37.30 |
50.1 |
1.42029 |
1.2348 |
629.3 |
509.6 |
37.40 |
50.2 |
1.42050 |
1.2355 |
630.9 |
510.6 |
37.49 |
50.3 |
1.42071 |
1.2362 |
632.4 |
511.6 |
37.58 |
50.4 |
1.42092 |
1.2367 |
634.1 |
512.7 |
37.68 |
50.5 |
1.42113 |
1.2374 |
635.7 |
513.7 |
37.78 |
50.6 |
1.42135 |
1.2381 |
637.3 |
514.7 |
37.87 |
50.7 |
1.42156 |
1.2386 |
638.7 |
515.7 |
37.96 |
50.8 |
1.42177 |
1.2391 |
640.4 |
516.8 |
38.06 |
50.9 |
1.42198 |
1.2396 |
641.9 |
517.8 |
38.15 |
51.0 |
1.42219 |
1.2401 |
643.4 |
518.8 |
38.24 |
51.1 |
1.42240 |
1.2406 |
645.0 |
519.9 |
38.33 |
51.2 |
1.42261 |
1.2411 |
646.5 |
520.9 |
38.42 |
51.3 |
1.42282 |
1.2416 |
648.1 |
522.0 |
38.52 |
51.4 |
1.42304 |
1.2421 |
649.6 |
523.0 |
38.61 |
51.5 |
1.42325 |
1.2427 |
651.2 |
524.0 |
38.70 |
51.6 |
1.42347 |
1.2434 |
652.9 |
525.1 |
38.80 |
51.7 |
1.42368 |
1.2441 |
654.5 |
526.1 |
38.90 |
51.8 |
1.42389 |
1.2447 |
656.1 |
527.1 |
38.99 |
51.9 |
1.42410 |
1.2454 |
657.8 |
528.2 |
39.09 |
52.0 |
1.42432 |
1.2461 |
659.4 |
529.2 |
39.19 |
52.1 |
1.42453 |
1.2466 |
661.0 |
530.2 |
39.28 |
52.2 |
1.42475 |
1.2470 |
662.5 |
531.3 |
39.37 |
52.3 |
1.42496 |
1.2475 |
664.1 |
532.3 |
39.47 |
52.4 |
1.42517 |
1.2480 |
665.6 |
533.3 |
39.56 |
52.5 |
1.42538 |
1.2486 |
667.2 |
534.4 |
39.65 |
52.6 |
1.42560 |
1.2493 |
668.9 |
535.4 |
39.75 |
52.7 |
1.42581 |
1.2500 |
670.5 |
536.4 |
39.85 |
52.8 |
1.42603 |
1.2506 |
672.2 |
537.5 |
39.95 |
52.9 |
1.42624 |
1.2513 |
673.8 |
538.5 |
40.04 |
53.0 |
1.42645 |
1.2520 |
675.5 |
539.5 |
40.14 |
53.1 |
1.42667 |
1.2525 |
677.1 |
540.6 |
40.24 |
53.2 |
1.42689 |
1.2530 |
678.5 |
541.5 |
40.32 |
53.3 |
1.42711 |
1.2535 |
680.2 |
542.6 |
40.42 |
53.4 |
1.42733 |
1.2540 |
681.8 |
543.7 |
40.52 |
53.5 |
1.42754 |
1.2546 |
683.4 |
544.7 |
40.61 |
53.6 |
1.42776 |
1.2553 |
685.1 |
545.8 |
40.72 |
53.7 |
1.42797 |
1.2560 |
686.7 |
546.7 |
40.81 |
53.8 |
1.42819 |
1.2566 |
688.4 |
547.8 |
40.91 |
53.9 |
1.42840 |
1.2573 |
690.1 |
548.9 |
41.01 |
54.0 |
1.42861 |
1.2580 |
691.7 |
549.8 |
41.11 |
54.1 |
1.42884 |
1.2585 |
693.3 |
550.9 |
41.20 |
54.2 |
1.42906 |
1.2590 |
694.9 |
551.9 |
41.30 |
54.3 |
1.42927 |
1.2595 |
696.5 |
553.0 |
41.39 |
54.4 |
1.42949 |
1.2600 |
698.1 |
554.0 |
41.49 |
54.5 |
1.42971 |
1.2606 |
699.7 |
555.1 |
41.58 |
54.6 |
1.42993 |
1.2613 |
701.4 |
556.1 |
41.68 |
54.7 |
1.43014 |
1.2620 |
703.1 |
557.1 |
41.79 |
54.8 |
1.43036 |
1.2625 |
704.7 |
558.2 |
41.88 |
54.9 |
1.43058 |
1.2630 |
706.2 |
559.1 |
41.97 |
TABLE III (continued)
Saccharose % (m/m) |
Refractive Index at 20 °C |
Mass Density at 20 °C |
Sugars in g/l |
Sugars in g/kg |
ABV % vol at 20 °C |
55.0 |
1.43079 |
1.2635 |
707.8 |
560.2 |
42.06 |
55.1 |
1.43102 |
1.2639 |
709.4 |
561.3 |
42.16 |
55.2 |
1.43124 |
1.2645 |
711.0 |
562.3 |
42.25 |
55.3 |
1.43146 |
1.2652 |
712.7 |
563.3 |
42.36 |
55.4 |
1.43168 |
1.2659 |
714.4 |
564.3 |
42.46 |
55.5 |
1.43189 |
1.2665 |
716.1 |
565.4 |
42.56 |
55.6 |
1.43211 |
1.2672 |
717.8 |
566.4 |
42.66 |
55.7 |
1.43233 |
1.2679 |
719.5 |
567.5 |
42.76 |
55.8 |
1.43255 |
1.2685 |
721.1 |
568.5 |
42.85 |
55.9 |
1.43277 |
1.2692 |
722.8 |
569.5 |
42.96 |
56.0 |
1.43298 |
1.2699 |
724.5 |
570.5 |
43.06 |
56.1 |
1.43321 |
1.2703 |
726.1 |
571.6 |
43.15 |
56.2 |
1.43343 |
1.2708 |
727.7 |
572.6 |
43.25 |
56.3 |
1.43365 |
1.2713 |
729.3 |
573.7 |
43.34 |
56.4 |
1.43387 |
1.2718 |
730.9 |
574.7 |
43.44 |
56.5 |
1.43409 |
1.2724 |
732.6 |
575.8 |
43.54 |
56.6 |
1.43431 |
1.2731 |
734.3 |
576.8 |
43.64 |
56.7 |
1.43454 |
1.2738 |
736.0 |
577.8 |
43.74 |
56.8 |
1.43476 |
1.2744 |
737.6 |
578.8 |
43.84 |
56.9 |
1.43498 |
1.2751 |
739.4 |
579.9 |
43.94 |
57.0 |
1.43519 |
1.2758 |
741.1 |
580.9 |
44.04 |
57.1 |
1.43542 |
1.2763 |
742.8 |
582.0 |
44.14 |
57.2 |
1.43564 |
1.2768 |
744.4 |
583.0 |
44.24 |
57.3 |
1.43586 |
1.2773 |
745.9 |
584.0 |
44.33 |
57.4 |
1.43609 |
1.2778 |
747.6 |
585.1 |
44.43 |
57.5 |
1.43631 |
1.2784 |
749.3 |
586.1 |
44.53 |
57.6 |
1.43653 |
1.2791 |
751.0 |
587.1 |
44.63 |
57.7 |
1.43675 |
1.2798 |
752.7 |
588.1 |
44.73 |
57.8 |
1.43698 |
1.2804 |
754.4 |
589.2 |
44.83 |
57.9 |
1.43720 |
1.2810 |
756.1 |
590.2 |
44.94 |
58.0 |
1.43741 |
1.2818 |
757.8 |
591.2 |
45.04 |
58.1 |
1.43764 |
1.2822 |
759.5 |
592.3 |
45.14 |
58.2 |
1.43784 |
1.2827 |
761.1 |
593.4 |
45.23 |
58.3 |
1.43909 |
1.2832 |
762.6 |
594.3 |
45.32 |
58.4 |
1.43832 |
1.2837 |
764.3 |
595.4 |
45.42 |
58.5 |
1.43854 |
1.2843 |
766.0 |
596.4 |
45.52 |
58.6 |
1.43877 |
1.2850 |
767.8 |
597.5 |
45.63 |
58.7 |
1.43899 |
1.2857 |
769.5 |
598.5 |
45.73 |
58.8 |
1.43922 |
1.2863 |
771.1 |
599.5 |
45.83 |
58.9 |
1.43944 |
1.2869 |
772.9 |
600.6 |
45.93 |
59.0 |
1.43966 |
1.2876 |
774.6 |
601.6 |
46.03 |
59.1 |
1.43988 |
1.2882 |
776.3 |
602.6 |
46.14 |
59.2 |
1.44011 |
1.2889 |
778.1 |
603.7 |
46.24 |
59.3 |
1.44034 |
1.2896 |
779.8 |
604.7 |
46.34 |
59.4 |
1.44057 |
1.2902 |
781.6 |
605.8 |
46.45 |
59.5 |
1.44079 |
1.2909 |
783.3 |
606.8 |
46.55 |
59.6 |
1.44102 |
1.2916 |
785.2 |
607.9 |
46.66 |
59.7 |
1.44124 |
1.2921 |
786.8 |
608.9 |
46.76 |
59.8 |
1.44147 |
1.2926 |
788.4 |
609.9 |
46.85 |
59.9 |
1.44169 |
1.2931 |
790.0 |
610.9 |
46.95 |
Saccharose % (m/m) |
Refractive Index at 20 °C |
Mass Density at 20 °C |
Sugars in g/l |
Sugars in g/kg |
ABV % vol at 20 °C |
65.0 |
1.45347 |
1.3248 |
879.7 |
664.0 |
52.28 |
65.1 |
1.45369 |
1.3255 |
881.5 |
665.0 |
52.39 |
65.2 |
1.45393 |
1.3261 |
883.2 |
666.0 |
52.49 |
65.3 |
1.45416 |
1.3268 |
885.0 |
667.0 |
52.60 |
65.4 |
1.45440 |
1.3275 |
886.9 |
668.1 |
52.71 |
65.5 |
1.45463 |
1.3281 |
888.8 |
669.2 |
52.82 |
65.6 |
1.45487 |
1.3288 |
890.6 |
670.2 |
52.93 |
65.7 |
1.45510 |
1.3295 |
892.4 |
671.2 |
53.04 |
65.8 |
1.45534 |
1.3301 |
894.2 |
672.3 |
53.14 |
65.9 |
1.45557 |
1.3308 |
896.0 |
673.3 |
53.25 |
66.0 |
1.45583 |
1.3315 |
898.0 |
674.4 |
53.37 |
66.1 |
1.45605 |
1.3320 |
899.6 |
675.4 |
53.46 |
66.2 |
1.45629 |
1.3325 |
901.3 |
676.4 |
53.56 |
66.3 |
1.45652 |
1.3330 |
903.1 |
677.5 |
53.67 |
66.4 |
1.45676 |
1.3335 |
904.8 |
678.5 |
53.77 |
66.5 |
1.45700 |
1.3341 |
906.7 |
679.6 |
53.89 |
66.6 |
1.45724 |
1.3348 |
908.5 |
680.6 |
53.99 |
66.7 |
1.45747 |
1.3355 |
910.4 |
681.7 |
54.11 |
66.8 |
1.45771 |
1.3361 |
912.2 |
682.7 |
54.21 |
66.9 |
1.45795 |
1.3367 |
913.9 |
683.7 |
54.31 |
67.0 |
1.45820 |
1.3374 |
915.9 |
684.8 |
54.43 |
67.1 |
1.45843 |
1.3380 |
917.6 |
685.8 |
54.53 |
67.2 |
1.45867 |
1.3387 |
919.6 |
686.9 |
54.65 |
67.3 |
1.45890 |
1.3395 |
921.4 |
687.9 |
54.76 |
67.4 |
1.45914 |
1.3400 |
923.1 |
688.9 |
54.86 |
67.5 |
1.45938 |
1.3407 |
925.1 |
690.0 |
54.98 |
67.6 |
1.45962 |
1.3415 |
927.0 |
691.0 |
55.09 |
67.7 |
1.45986 |
1.3420 |
928.8 |
692.1 |
55.20 |
67.8 |
1.46010 |
1.3427 |
930.6 |
693.1 |
55.31 |
67.9 |
1.46034 |
1.3434 |
932.6 |
694.2 |
55.42 |
68.0 |
1.46060 |
1.3440 |
934.4 |
695.2 |
55.53 |
68.1 |
1.46082 |
1.3447 |
936.2 |
696.2 |
55.64 |
68.2 |
1.46106 |
1.3454 |
938.0 |
697.2 |
55.75 |
68.3 |
1.46130 |
1.3460 |
939.9 |
698.3 |
55.86 |
68.4 |
1.46154 |
1.3466 |
941.8 |
699.4 |
55.97 |
68.5 |
1.46178 |
1.3473 |
943.7 |
700.4 |
56.08 |
68.6 |
1.46202 |
1.3479 |
945.4 |
701.4 |
56.19 |
68.7 |
1.46226 |
1.3486 |
947.4 |
702.5 |
56.30 |
68.8 |
1.46251 |
1.3493 |
949.2 |
703.5 |
56.41 |
68.9 |
1.46275 |
1.3499 |
951.1 |
704.6 |
56.52 |
69.0 |
1.46301 |
1.3506 |
953.0 |
705.6 |
56.64 |
69.1 |
1.46323 |
1.3513 |
954.8 |
706.6 |
56.74 |
69.2 |
1.46347 |
1.3519 |
956.7 |
707.7 |
56.86 |
69.3 |
1.46371 |
1.3526 |
958.6 |
708.7 |
56.97 |
69.4 |
1.46396 |
1.3533 |
960.6 |
709.8 |
57.09 |
69.5 |
1.46420 |
1.3539 |
962.4 |
710.8 |
57.20 |
69.6 |
1.46444 |
1.3546 |
964.3 |
711.9 |
57.31 |
69.7 |
1.46468 |
1.3553 |
966.2 |
712.9 |
57.42 |
69.8 |
1.46493 |
1.3560 |
968.2 |
714.0 |
57.54 |
69.9 |
1.46517 |
1.3566 |
970.0 |
715.0 |
57.65 |
Saccharose % (m/m) |
Refractive Index at 20 °C |
Mass Density à 20 °C |
Sugars in g/l |
Sugars in g/kg |
ABV % vol at 20 °C |
70.0 |
1.46544 |
1.3573 |
971.8 |
716.0 |
57.75 |
70.1 |
1.46565 |
1.3579 |
973.8 |
717.1 |
57.87 |
70.2 |
1.46590 |
1.3586 |
975.6 |
718.1 |
57.98 |
70.3 |
1.46614 |
1.3593 |
977.6 |
719.2 |
58.10 |
70.4 |
1.46639 |
1.3599 |
979.4 |
720.2 |
58.21 |
70.5 |
1.46663 |
1.3606 |
981.3 |
721.2 |
58.32 |
70.6 |
1.46688 |
1.3613 |
983.3 |
722.3 |
58.44 |
70.7 |
1.46712 |
1.3619 |
985.2 |
723.4 |
58.55 |
70.8 |
1.46737 |
1.3626 |
987.1 |
724.4 |
58.66 |
70.9 |
1.46761 |
1.3633 |
988.9 |
725.4 |
58.77 |
71.0 |
1.46789 |
1.3639 |
990.9 |
726.5 |
58.89 |
71.1 |
1.46810 |
1.3646 |
992.8 |
727.5 |
59.00 |
71.2 |
1.46835 |
1.3653 |
994.8 |
728.6 |
59.12 |
71.3 |
1.46859 |
1.3659 |
996.6 |
729.6 |
59.23 |
71.4 |
1.46884 |
1.3665 |
998.5 |
730.7 |
59.34 |
71.5 |
1.46908 |
1.3672 |
1000.4 |
731.7 |
59.45 |
71.6 |
1.46933 |
1.3678 |
1002.2 |
732.7 |
59.56 |
71.7 |
1.46957 |
1.3685 |
1004.2 |
733.8 |
59.68 |
71.8 |
1.46982 |
1.3692 |
1006.1 |
734.8 |
59.79 |
71.9 |
1.47007 |
1.3698 |
1008.0 |
735.9 |
59.91 |
72.0 |
1.47036 |
1.3705 |
1009.9 |
736.9 |
60.02 |
72.1 |
1.47056 |
1.3712 |
1012.0 |
738.0 |
60.14 |
72.2 |
1.47081 |
1.3718 |
1013.8 |
739.0 |
60.25 |
72.3 |
1.47106 |
1.3725 |
1015.7 |
740.0 |
60.36 |
72.4 |
1.47131 |
1.3732 |
1017.7 |
741.1 |
60.48 |
72.5 |
1.47155 |
1.3738 |
1019.5 |
742.1 |
60.59 |
72.6 |
1.47180 |
1.3745 |
1021.5 |
743.2 |
60.71 |
72.7 |
1.47205 |
1.3752 |
1023.4 |
744.2 |
60.82 |
72.8 |
1.47230 |
1.3758 |
1025.4 |
745.3 |
60.94 |
72.9 |
1.47254 |
1.3765 |
1027.3 |
746.3 |
61.05 |
73.0 |
1.47284 |
1.3772 |
1029.3 |
747.4 |
61.17 |
73.1 |
1.47304 |
1.3778 |
1031.2 |
748.4 |
61.28 |
73.2 |
1.47329 |
1.3785 |
1033.2 |
749.5 |
61.40 |
73.3 |
1.47354 |
1.3792 |
1035.1 |
750.5 |
61.52 |
73.4 |
1.47379 |
1.3798 |
1037.1 |
751.6 |
61.63 |
73.5 |
1.47404 |
1.3805 |
1039.0 |
752.6 |
61.75 |
73.6 |
1.47429 |
1.3812 |
1040.9 |
753.6 |
61.86 |
73.7 |
1.47454 |
1.3818 |
1042.8 |
754.7 |
61.97 |
73.8 |
1.47479 |
1.3825 |
1044.8 |
755.7 |
62.09 |
73.9 |
1.47504 |
1.3832 |
1046.8 |
756.8 |
62.21 |
74.0 |
1.47534 |
1.3838 |
1048.6 |
757.8 |
62.32 |
74.1 |
1.47554 |
1.3845 |
1050.7 |
758.9 |
62.44 |
74.2 |
1.47579 |
1.3852 |
1052.6 |
759.9 |
62.56 |
74.3 |
1.47604 |
1.3858 |
1054.6 |
761.0 |
62.67 |
74.4 |
1.47629 |
1.3865 |
1056.5 |
762.0 |
62.79 |
74.5 |
1.47654 |
1.3871 |
1058.5 |
763.1 |
62.91 |
74.6 |
1.47679 |
1.3878 |
1060.4 |
764.1 |
63.02 |
74.7 |
1.47704 |
1.3885 |
1062.3 |
765.1 |
63.13 |
74.8 |
1.47730 |
1.3892 |
1064.4 |
766.2 |
63.26 |
74.9 |
1.47755 |
1.3898 |
1066.3 |
767.2 |
63.37 |
75.0 |
1.47785 |
1.3905 |
1068.3 |
768.3 |
63.49 |
Total dry matter (gravimétrie) (Type-I)
OIV-MA-AS2-03A Total dry matter
Type I method
- Definition
The total dry extract or the total dry matter includes all matter that is non‑volatile under specified physical conditions. These physical conditions must be such that the matter forming the extract undergoes as little alteration as possible while the test is being carried out.
The sugar‑free extract is the difference between the total dry extract and the total sugars. The reduced extract is the difference between the total dry extract and the total sugars in excess of 1 g/L, potassium sulfate in excess of 1 g/L, any mannitol present and any other chemical substances which may have been added to the wine.
The residual extract is the sugar‑free extract less the fixed acidity expressed as tartaric acid.
- Principle
The weight of residue obtained when a sample of wine, previously absorbed onto filter paper, is dried in a current of air, at a pressure of 20 ‑ 25 mm Hg at 70°C.
- Method
3.1. Apparatus
3.1.1. Oven:
Cylindrical basin (internal diameter: 27 cm, height: 6 cm) made of aluminum with an aluminum lid, heated to 70°C and regulated to 1°C.
A tube (internal diameter: 25 mm) connecting the oven to a vacuum pump providing a flow rate of 50 L/h. The air, previously dried by bubbling through concentrated sulfuric acid, is circulated in the oven by a fan in order to achieve quick homogenous reheating. The rate of airflow is regulated by a tap and is to be 30‑40 L per hour and the pressure in the oven is 25 mm of mercury.
The oven can then be used providing it is calibrated as in 3.1.3.
3.1.2. Dishes:
Stainless steel dishes (60 mm internal diameter, 25 mm in height) provided with fitting lids. Each dish contains 4‑4.5 g of filter paper, cut into fluted strips 22 mm in length.
The filter paper is first washed with hydrochloric acid, 2 g/L, for 8 h, rinsed five times with water and then dried in air.
3.1.3. Calibration of apparatus and method
a) Checking the seal of the dish lids. A dish, containing dried filter paper, with the lid on, after first being cooled in a dessicator containing sulfuric acid, should not gain more than 1 mg/h when left in the laboratory.
b) Checking the degree of drying. A pure solution of sucrose, 100 g/L, should give a dry extract of 100 g 1 g/L.
c) A pure solution of lactic acid, 10 g/L, should give a dry extract of at least 9.5 g/L.
If necessary, the drying time in the oven can be increased or decreased by changing the rate of airflow to the oven or by changing the pressure in order that these conditions should be met.
Note: The lactic acid solution can be prepared as follows: 10 mL of lactic acid is diluted to approximately 100 mL with water. This solution is placed in a dish and heated on a boiling water bath for 4 h, distilled water is added if the volume decreases to less than 50 mL (approx). Make up the solution to 1 liter and titrate 10 mL of this solution with alkali, 0.1 M. Adjust the lactic acid solution to 10 g/L.
3.2. Procedure
3.2.1. Weighing the dish
Place the dish containing filter paper in the oven for 1 h. Stop the vacuum pump and immediately place the lid on the dish on opening the oven. Cool in a dessicator and weigh to the nearest 0.1 mg: the mass of the dish and lid is po g.
3.2.2. Weighing the sample
Place 10 mL of must or wine into the weigh dish. Allow the sample to be completely absorbed onto the filter paper. Place the dish in the oven for 2 h (or for the time used in the calibration of the standard in 3.1.3). Weigh the dish following the procedure 3.2.1 beginning "Stop the vacuum ..." The mass is p g.
Note: The sample weight should be taken when analyzing very sweet wines or musts.
3.3. Calculation
The total dry extract is given by:
|
For very sweet wines or musts the total dry extract is given by:
0 |
(P = mass of sample in grams
= density of wine or must in g/mL.
3.4. Expression of results
The total dry extract is expressed in g/L to one decimal place.
Note:
Calculate total dry extract by separately taking into account quantities of glucose and fructose (reducing sugars) and the quantity of saccharose, as follows:
Sugar-free extract = Total dry extract – reducing sugars (glucose + fructose) – saccharose |
In the case that the method of analysis allows for sugar inversion, use the following formula for the calculation:
Sugar-free extract = Total dry extract – reducing sugars (glucose + fructose) - [(Sugars after inversion – Sugars before inversion) x 0,95] |
Inversion refers to the process that leads to the conversion of a stereoisomer into compounds with reverse stereoisomerism. In particular, the process based on splitting sucrose into fructose and glucose, carried out by keeping acidified solutions containing sugars (100 ml solution containing sugars + 5 ml concentrated hydrochloric acid) for at least 15 min at 50°C or above in a water‑bath (the water‑bath is maintained at 60°C until the temperature of the solution reaches 50°C), is called sugar inversion. The final solution is laevo-rotatory due to the presence of fructose, while the initial solution is dextro-rotatory due to the presence of sucrose.
Table I: For the calculation of the total dry extract content (g/L)
3rd decimal place |
||||||||||
Density to 2 decimal places |
||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
Extract g/L |
||||||||||
1.00 |
0 |
2.6 |
5.1 |
7.7 |
10.3 |
12.9 |
15.4 |
18.0 |
20.6 |
23.2 |
1.01 |
25.8 |
28.4 |
31.0 |
33.6 |
36.2 |
38.8 |
41.3 |
43.9 |
46.5 |
49.1 |
1.02 |
51.7 |
54.3 |
56.9 |
59.5 |
62.1 |
64.7 |
67.3 |
69.9 |
72.5 |
75.1 |
1.03 |
77.7 |
80.3 |
82.9 |
85.5 |
88.1 |
90.7 |
93.3 |
95.9 |
98.5 |
101.1 |
1.04 |
103.7 |
106.3 |
109.0 |
111.6 |
114.2 |
116.8 |
119.4 |
122.0 |
124.6 |
127.2 |
1.05 |
129.8 |
132.4 |
135.0 |
137.6 |
140.3 |
142.9 |
145.5 |
148.1 |
150.7 |
153.3 |
1.06 |
155.9 |
158.6 |
161.2 |
163.8 |
166.4 |
169.0 |
171.6 |
174.3 |
176.9 |
179.5 |
1.07 |
182.1 |
184.8 |
.187.4 |
190.0 |
192.6 |
195.2 |
197.8 |
200.5 |
203.1 |
205.8 |
1.08 |
208.4 |
211.0 |
213.6 |
216.2 |
218.9 |
221.5 |
224.1 |
226.8 |
229.4 |
232.0 |
1.09 |
234.7 |
237.3 |
239.9 |
242.5 |
245.2 |
247.8 |
250.4 |
253.1 |
255.7 |
258.4 |
1.10 |
261.0 |
263.6 |
266.3 |
268.9 |
271.5 |
274.2 |
276.8 |
279.5 |
282.1 |
284.8 |
1.11 |
287.4 |
290.0 |
292.7 |
295.3 |
298.0 |
300.6 |
303.3 |
305.9 |
308.6 |
311.2 |
1.12 |
313.9 |
316.5 |
319.2 |
321.8 |
324.5 |
327.1 |
329.8 |
332.4 |
335.1 |
337.8 |
1.13 |
340.4 |
343.0 |
345.7 |
348.3 |
351.0 |
353.7 |
356.3 |
359.0 |
361.6 |
364.3 |
1.14 |
366.9 |
369.6 |
372.3 |
375.0 |
377.6 |
380.3 |
382.9 |
385.6 |
388.3 |
390.9 |
1.15 |
393.6 |
396.2 |
398.9 |
401.6 |
404.3 |
406.9 |
409.6 |
412.3 |
415.0 |
417.6 |
1.16 |
420.3 |
423.0 |
425.7 |
428.3 |
431.0 |
433.7 |
436.4 |
439.0 |
441.7 |
444.4 |
1.17 |
447.1 |
449.8 |
452.4 |
455.2 |
457.8 |
460.5 |
463.2 |
465.9 |
468.6 |
471.3 |
1.18 |
473.9 |
476.6 |
479.3 |
482.0 |
484.7 |
487.4 |
490.1 |
492.8 |
495.5 |
498.2 |
1.19 |
500.9 |
503.5 |
506.2 |
508.9 |
511.6 |
514.3 |
517.0 |
519.7 |
522.4 |
525.1 |
1.20 |
527.8 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
Interpolation table
4th decimal place |
Extract g/L |
4th decimal place |
Extract g/L |
4th decimal place |
Extract g/L |
1 |
0.3 |
4 |
1.0 |
7 |
1.8 |
2 |
0.5 |
5 |
1.3 |
8 |
2.1 |
3 |
0.8 |
6 |
1.6 |
9 |
2.3 |
Bibliography
- PIEN J., MEINRATH H., Ann. Fals. Fraudes, 1938, 30, 282.
- DUPAIGNE P., Bull. Inst. Jus Fruits, 1947, No 4.
- TAVERNIER J., JACQUIN P., Ind. Agric. Alim., 1947, 64, 379.
- JAULMES P., HAMELLE Mlle G., Bull. O.I.V., 1954, 27, 276.
- JAULMES P., HAMELLE Mlle G., Mise au point de chimie analytique pure et appliquée, et d'analyse bromatologique, 1956, par J.A. GAUTIER, Paris, 4e série.
- JAULMES P., HAMELLE Mlle G., Trav. Soc. Pharm. Montpellier, 1963, 243.
- HAMELLE Mlle G., Extrait sec des vins et des moûts de raisin, 1965, Thèse Doct. Pharm. Montpellier.
Total dry matter (densimétrie) (Type-IV)
OIV-MA-AS2-03B Total dry matter
Type IV method
- Definition
The total dry extract or the total dry matter includes all matter that is non‑volatile under specified physical conditions. These physical conditions must be such that the matter forming the extract undergoes as little alteration as possible while the test is being carried out.
The sugar free extract is the difference between the total dry extract and the total sugars. The reduced extract is the difference between the total dry extract and the total sugars in excess of 1 g/L, potassium sulfate in excess of 1 g/L, any mannitol present and any other chemical substances which may have been added to the wine.
The residual extract is the sugar free extract less the fixed acidity expressed as tartaric acid.
- Principle
The total dry extract is calculated indirectly from the specific gravity of the must and, for wine, from the specific gravity of the alcohol‑free wine.
This dry extract is expressed in terms of the quantity of sucrose which, when dissolved in water and made up to a volume of one liter, gives a solution of the same gravity as the must or the alcohol‑free wine.
- Method
3.1. Procedure
Determine the specific gravity of a must or wine.
In the case of wine, calculate the specific gravity of the "alcohol free wine" using the following formula:
|
or
where:
- = specific gravity of the wine at 20°C (corrected for volatile acidity [(1)])
- = specific gravity at 20°C of a water‑alcohol mixture of the same alcoholic strength as the wine obtained using the formula:
where :
- = density of the wine at 20°C (corrected for volatile acidity [(1)])
- = density at 20°C of the water alcohol mixture of the same alcoholic strength as the wine obtained from Table 1 of chapter Alcoholic strength by volume for a temperature of 20°C.
3.2. Calculation
Use the value for specific gravity of the alcohol free wine to obtain the total dry extract (g/L) from table I
3.3. Expression of results
The total dry extract is reported in g/L to one decimal place.
Note:
Calculate total dry extract by separately taking into account quantities of glucose and fructose (reducing sugars) and the quantity of saccharose, as follows:
Sugar-free extract = Total dry extract – reducing sugars (glucose + fructose) – saccharose |
In the case that the method of analysis allows for sugar inversion, use the following formula for the calculation:
Sugar-free extract = Total dry extract – reducing sugars (glucose + fructose) - [(Sugars after inversion – Sugars before inversion) x 0,95] |
Inversion refers to the process that leads to the conversion of a stereoisomer into compounds with reverse stereoisomerism. In particular, the process based on splitting sucrose into fructose and glucose, carried out by keeping acidified solutions containing sugars (100 ml solution containing sugars + 5 ml concentrated hydrochloric acid) for at least 15 min at 50°C or above in a water‑bath (the water‑bath is maintained at 60°C until the temperature of the solution reaches 50°C), is called sugar inversion. The final solution is laevo-rotatory due to the presence of fructose, while the initial solution is dextro-rotatory due to the presence of sucrose.
TABLE I
For the calculation of the total dry extract content (g/L)
3rd decimal place |
||||||||||
Density to 2 decimal places |
||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
Extract g/L |
||||||||||
1.00 |
0 |
2.6 |
5.1 |
7.7 |
10.3 |
12.9 |
15.4 |
18.0 |
20.6 |
23.2 |
1.01 |
25.8 |
28.4 |
31.0 |
33.6 |
36.2 |
38.8 |
41.3 |
43.9 |
46.5 |
49.1 |
1.02 |
51.7 |
54.3 |
56.9 |
59.5 |
62.1 |
64.7 |
67.3 |
69.9 |
72.5 |
75.1 |
1.03 |
77.7 |
80.3 |
82.9 |
85.5 |
88.1 |
90.7 |
93.3 |
95.9 |
98.5 |
101.1 |
1.04 |
103.7 |
106.3 |
109.0 |
111.6 |
114.2 |
116.8 |
119.4 |
122.0 |
124.6 |
127.2 |
1.05 |
129.8 |
132.4 |
135.0 |
137.6 |
140.3 |
142.9 |
145.5 |
148.1 |
150.7 |
153.3 |
1.06 |
155.9 |
158.6 |
161.2 |
163.8 |
166.4 |
169.0 |
171.6 |
174.3 |
176.9 |
179.5 |
1.07 |
182.1 |
184.8 |
.187.4 |
190.0 |
192.6 |
195.2 |
197.8 |
200.5 |
203.1 |
205.8 |
1.08 |
208.4 |
211.0 |
213.6 |
216.2 |
218.9 |
221.5 |
224.1 |
226.8 |
229.4 |
232.0 |
1.09 |
234.7 |
237.3 |
239.9 |
242.5 |
245.2 |
247.8 |
250.4 |
253.1 |
255.7 |
258.4 |
1.10 |
261.0 |
263.6 |
266.3 |
268.9 |
271.5 |
274.2 |
276.8 |
279.5 |
282.1 |
284.8 |
1.11 |
287.4 |
290.0 |
292.7 |
295.3 |
298.0 |
300.6 |
303.3 |
305.9 |
308.6 |
311.2 |
1.12 |
313.9 |
316.5 |
319.2 |
321.8 |
324.5 |
327.1 |
329.8 |
332.4 |
335.1 |
337.8 |
1.13 |
340.4 |
343.0 |
345.7 |
348.3 |
351.0 |
353.7 |
356.3 |
359.0 |
361.6 |
364.3 |
1.14 |
366.9 |
369.6 |
372.3 |
375.0 |
377.6 |
380.3 |
382.9 |
385.6 |
388.3 |
390.9 |
1.15 |
393.6 |
396.2 |
398.9 |
401.6 |
404.3 |
406.9 |
409.6 |
412.3 |
415.0 |
417.6 |
1.16 |
420.3 |
423.0 |
425.7 |
428.3 |
431.0 |
433.7 |
436.4 |
439.0 |
441.7 |
444.4 |
1.17 |
447.1 |
449.8 |
452.4 |
455.2 |
457.8 |
460.5 |
463.2 |
465.9 |
468.6 |
471.3 |
1.18 |
473.9 |
476.6 |
479.3 |
482.0 |
484.7 |
487.4 |
490.1 |
492.8 |
495.5 |
498.2 |
1.19 |
500.9 |
503.5 |
506.2 |
508.9 |
511.6 |
514.3 |
517.0 |
519.7 |
522.4 |
525.1 |
1.20 |
527.8 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
Interpolation table
4th decimal place |
Extract g/L |
4th decimal place |
Extract g/L |
4th decimal place |
Extract g/L |
1 |
0.3 |
4 |
1.0 |
7 |
1.8 |
2 |
0.5 |
5 |
1.3 |
8 |
2.1 |
3 |
0.8 |
6 |
1.6 |
9 |
2.3 |
Bibliography
- TABLE DE PLATO, d'après Allgemeine Verwaltungsvorschrift für die Untersuchung von Wein und ähnlichen alkoholischen Erzeugnissen sowie von Fruchtsäften, vom April 1960, Bundesanzeiger Nr. 86 vom 5. Mai 1960. Une table très voisine se trouve dans Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists, Ed. A.O.A.C., Washington 1945, 815.
[(1)](1 ) NOTE: Before carrying out this calculation, the specific gravity (or the density) of the wine measured as specified above should be corrected for the effect of the volatile acidity using the formula:
or
where a is the volatile acidity expressed in milli-equivalents per liter.
** The coefficient 1.0018 approximates to 1 when rv is below 1.05 which is often the case.
Ash (Type-I)
OIV-MA-AS2-04 Ash
Type I method
- Definition
The ash content is defined to be all those products remaining after igniting the residue left after the evaporation of the wine. The ignition is carried out in such a way that all the cations (excluding the ammonium cation) are converted into carbonates or other anhydrous inorganic salts.
- Principle
The wine extract is ignited at a temperature between 500 and 550°C until complete combustion (oxidation) of organic material has been achieved.
- Apparatus
3.1. boiling water‑bath at 100C;
3.2. balance sensitive to 0.1 mg;
3.3. hot‑plate or infra‑red evaporator;
3.4. temperature‑controlled electric muffle furnace;
3.5. dessicator;
3.6. flat‑bottomed platinum dish 70 mm in diameter and 25 mm in height.
- Procedure
Pipette 20 mL of wine into the previously tared platinum dish (original weight ρo g). Evaporate on the boiling water-bath, and heat the residue on the hot‑plate at 200°C or under the infra‑red evaporator until carbonization begins. When no more fumes are produced, place the dish in the electric muffle furnace maintained at 525 25°C. After 15 min or carbonization, remove the dish from the furnace, add 5 mL of distilled water, evaporate on the water‑bath or under the infra‑red evaporator, and again heat the residue to 525°C for 10 min.
If combustion (oxidation) of the carbonized particles is not complete, the following operations are repeated: washing the carbonized particles, evaporation of water, and ignition. For wines with a high sugar content, it is advantageous to add a few drops of pure vegetable oil to the extract before the first ashing to prevent excessive foaming. After cooling in the desiccator, the dish is weighed (ρ1 g).
The weight of the ash in the sample (20 mL) is then calculated as p = (ρ1 — ρO) g.
- Expression of results
The weight P of the ash in grams per liter is given to two decimal places by the expression:
P = 50 p.
Alkalinity of Ash (Type-IV)
OIV-MA-AS2-05 Alkalinity of ash
Type IV method
- Definition
The alkalinity of the ash is defined as the sum of cations, other than the ammonium ion, combined with the organic acids in the wine.
- Principle
The ash is dissolved in a known (excess) amount of a hot standardized acid solution; the excess is determined by titration using methyl orange as an indicator.
- Reagents and apparatus
3.1. Sulfuric acid solution, 0.05 M
3.2. Sodium hydroxide solution, 0.1 M NaOH
3.3. Methyl orange, 0.1% solution in distilled water
3.4. Boiling water‑bath
- Procedure
Add 10 mL 0.05 M sulfuric acid solution (3.1) to the ash from 20 mL of wine contained in the platinum dish. Place the dish on the boiling water‑bath for about 15 min, breaking up and agitating the residue with a glass rod to speed up the dissolution. Add two drops of methyl orange solution and titrate the excess sulfuric acid against 0.1 M sodium hydroxide (3.2) until the color of the indicator changes to yellow.
- Expression of results
5.1. Method of calculation
The alkalinity of ash, expressed in milliequivalents per liter to one decimal place, is given by:
A=5 (10-n) |
where n mL is the volume of sodium hydroxide, 0.1 M, used.
5.2. Alternative expression
The alkalinity of ash, expressed in grams per liter of potassium carbonate, to two decimal places, is given by:
A=0.345 (10-n) |
Bibliography
- JAULMES P., Analyse des vins, Librairie Poulain, Montpellier, éd., 1951, 107.
Oxidation-reduction potential (Type-IV)
OIV-MA-AS2-06 Measurement of the oxidation-reduction potential in wines
Type IV method
- Purpose and scope of application:
The oxidation-reduction potential (EH) is a measure of the oxidation or reduction state of a medium. In the field of enology, oxygen and the oxidation-reduction potential are two important factors in the pre-fermentation processing of the grape harvest, the winemaking process, growing, and wine storage.
Proposals are hereby submitted for equipment designed to measure the Oxidation-reduction Potential in Wines and a working method for taking measurements under normal conditions. This method has not undergone any joint analysis, given the highly variable nature of the oxidation-reduction state of a particular wine, a situation which makes this step in the validation process difficult to implement. As a result, this is a class 4 method[1] intended basically for production.
- Underlying principle
The oxidation-reduction potential of a medium is defined as the difference in potential between a corrosion-proof electrode immersed in this medium and a standard hydrogen electrode linked to the medium. Indeed, only the difference in oxidation-reductions potentials of two linked systems can be measured. Consequently, the oxidation-reduction potential of the hydrogen electrode is considered to be zero, and all oxidation-reduction potentials are compared to it. The oxidation-reduction potential is a measurement value permitting expression of the instantaneous physico-chemical state of a solution. Only potentiometric volumetric analysis of the total oxidation-reduction pairs and an estimate of the oxidizing agent/reducing agent ratio can yield a true quantitative measurement. Oxidation-reduction potential is measured using combined electrodes, whether in wine or in another solution. This system usually involves the use of a platinum electrode (measuring electrode) and a silver or mercurous chloride electrode (reference electrode).
- Equipment
Although several types of electrodes exist, it is recommended that an electrode adapted for measuring the EH in wine be used. It is recommended that use be made of a double-jacket combined electrode linked to a reference electrode (see figure). This system incorporates a measuring electrode, and a double-jacket reference electrode, both of which are linked to an ion meter. The inner jacket of the reference electrode is filled with a solution of 17.1% ; trace amounts of AgCl; trace amounts of Triton X-100; 5% KCL; 77.9% de-ionized water; and for the measuring electrode, the solution is made up of <1% AgCL; 29.8% KCL; and 70% de-ionized water.
Modified Combined Electrode
|
|||
Oxidant |
Reduced |
Reductant |
Oxidized |
- Cleaning and calibration of the electrodes
4.1. Calibration
The electrodes are calibrated using solutions with known, constant oxidation-reduction potentials. An equimolar solution (10 mM/l) of ferricyanide and potassium ferrous cyanide is used. Its composition is: 0.329g of ; 0.422g of ; 0.149g of KCl and up to 1000ml of water. At 20 °C this solution has an oxidation-reduction potential of 406 mV (5 mV), but this potential changes over time, thus requiring that the solution not be stored for more than two weeks in the dark.
4.2. Cleaning the Platinum in the Electrode
The electrode platinum should be cleaned by immersing it in a solution of 30% hydrogen peroxide by volume for one hour, then washing it with water. Complete cleaning in water is required after each series of measurement. The system is normally cleaned after each week of use.
- Working method
5.1. Filling the Inner Jacket
The composition of the double jacket varies depending on the type of medium for which the EH is being measured (Table below).
Table
Composition of the Filler Solution in the Double Jacket of the Electrode as a Function of the Medium Measured
Medium to be measured |
Solution Composition of the jacket |
1 Dry wines |
Ethanol 12% by vol., 5g tartaric acid, NaOH N up to pH 3.5, distilled water up to 1000 ml |
2 Sweet wines |
Solution 1 plus 20 g/l sucrose |
3 Special sweet wines |
Solution 2 plus 100 mg/l of SO2 |
4 Brandies |
Ethanol 50% by vol., acetic acid up to pH 5, distilled water up to 1000 ml. |
5.2. Balancing the Electrode with the Medium to Be Measured
Before taking any measurements, the electrodes must be calibrated in Michaelis solution, then stabilized for 15 minutes in a wine, if the measurement s are to be taken in wines. Next, for measurements taken on site, measurements are read after the electrodes have been immersed in the medium for 5 minutes. For laboratory measurements, the stability index is the EH(mV) / T (minutes) ratio; when this latter is 0.2, the potential can be read.
5.3. Measurements Under Practical Conditions
Measurements are systematically taken on site without any handling that could change the oxidation-reduction potential values. When taking measurements in storehouses, casks, vats, etc. care should be taken to record temperature, pH and dissolved oxygen content (method under preparation) at the same time as the EH measurement is taken, as these measurements will subsequently be used to interpret results. For wines in bottles, the measurement is taken in the wine after letting it sit
in a room whose temperature is 20 °C, immediately after the container is opened, under a constant flow of nitrogen, and after immersing the entire electrode unit in the bottle.
5.4. Expression of Results
Findings are recorded in mV as compared with the standard hydrogen electrode.
[1] In conformity with the classification detailed in the Codex Alimentarius.
Chromatic Characteristics (Type-IV)
OIV-MA-AS2-07B Chromatic characteristics
Type IV method
- Definitions
The "chromatic characteristics" of a wine are its luminosity and chromaticity. Luminosity depends on transmittance and varies inversely with the intensity of color of the wine. Chromaticity depends on dominant wavelength (distinguishing the shade) and purity.
Conventionally, and for the sake of convenience, the chromatic characteristics of red and rosé wines are described by the intensity of color and shade, in keeping with the procedure adopted as the working method.
- Principle of the methods
(applicable to red and rosé wines)
A spectrophotometric method whereby chromatic characteristics are expressed conventionally, as given below:
- The intensity of color is given by the sum of absorbencies (or optical densities) using a 1 cm optical path and radiations of wavelengths 420, 520 and 620 nm.
- The shade is expressed as the ratio of absorbance at 420 nm to absorbance at 520 nm.
- Method
3.1. Apparatus
3.1.1. Spectrophotometer enabling measurements to be made between 300 and 700 nm.
3.1.2. Glass cells (matched pairs) with optical path b equal to 0.1, 0.2, 0.5, 1 and 2 cm.
3.2. Preparation of the sample
If the wine is cloudy, clarify it by centrifugation; young or sparkling wines must have the bulk of their carbon dioxide removed by agitation under vacuum.
3.3. Method
The optical path b of the glass cell used must be chosen so that the measured absorbance A, falls between 0.3 and 0.7.
Take the spectrophotometric measurements using distilled water as the reference liquid, in a cell of the same optical path b, in order to set the zero on the absorbance scale of the apparatus at the wavelengths of 420, 520 and 620 nm.
Using the appropriate optical path b, read off the absorbencies at each of these three wavelengths for the wine.
3.4. Calculations
Calculate the absorbencies for a 1 cm optical path for the three wavelengths by dividing the absorbencies found (, and ) by b, in cm.
3.5. Expression of Results
The color intensity I is conventionally given by:
and is expressed to three decimal places.
The shade N is conventionally given by:
|
and is expressed to three decimal places.
Table 1
Converting absorbance into transmittance (T%)
Method: find the first decimal figure of the absorbance value in the left‑hand column (0-9) and the second decimal figure in the top row (0-9).
Take the figure at the intersection of column and row: to find the transmittance, divide the figure by 10 if absorbance is less than 1, by 100 if between 1 and 2 and by 1000 if between 2 and 3.
Note: The figure in the top right hand corner of each box enables the third decimal figure of the absorbance to be determined by interpolation.
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
23 |
22 |
22 |
21 |
21 |
20 |
20 |
19 |
19 |
19 |
|
0 |
1000 |
977 |
955 |
933 |
912 |
891 |
871 |
851 |
932 |
813 |
18 |
18 |
17 |
17 |
16 |
16 |
16 |
15 |
15 |
15 |
|
1 |
794 |
776 |
759 |
741 |
724 |
708 |
692 |
676 |
661 |
646 |
14 |
14 |
14 |
14 |
13 |
13 |
13 |
12 |
12 |
12 |
|
2 |
631 |
617 |
603 |
589 |
575 |
562 |
549 |
537 |
525 |
513 |
11 |
11 |
11 |
11 |
10 |
9 |
9 |
10 |
10 |
9 |
|
3 |
501 |
490 |
479 |
468 |
457 |
447 |
436 |
427 |
417 |
407 |
9 |
9 |
9 |
8 |
8 |
8 |
8 |
7 |
8 |
||
4 |
398 |
389 |
380 |
371 |
363 |
355 |
347 |
339 |
331 |
324 |
7 |
7 |
7 |
6 |
7 |
6 |
6 |
6 |
6 |
||
5 |
316 |
309 71 |
302 |
295 |
288 |
282 |
275 |
269 |
263 |
257 |
6 |
5 |
6 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
|
6 |
251 |
245 |
240 |
234 |
229 |
224 |
219 |
214 |
209 |
204 |
4 |
5 |
4 |
4 |
4 |
4 |
4 |
4 |
4 |
||
7 |
199 |
195 |
190 |
186 |
182 |
178 |
174 |
170 |
166 |
162 |
3 |
4 |
3 |
4 |
4 |
3 |
3 |
3 |
3 |
3 |
|
8 |
158 |
155 |
151 |
148 |
144 |
141 |
138 |
135 |
132 |
129 |
3 |
3 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
|
9 |
126 |
123 |
120 |
117 |
115 |
112 |
110 |
107 |
105 |
102 |
Example:
Absorbance |
0.47 |
1.47 |
2.47 |
3.47 |
T% |
33.9% |
3.4% |
0.3% |
0% |
Transmittance (T%) is expressed to the nearest 0.1%.
|
Figure 1: Chromaticity diagram, showing the locus of all colors of the spectrum |
|
Figure 2: Chromaticity diagram for pure red wines and brick red wines |
|
Figure 3: Chromaticity diagram for pure red wines and brick red wine |
|
Figure 4:Chromaticity diagram for pure red wines and purple wines |
|
Figure 5:Chromaticity diagram for pure red wines and purple red wines |
|
Figure 6: Chromaticity diagram for brick red wines and purple red wines |
Bibliography:
- BOUTARIC A., FERRE L., ROY M., Ann. Fals. Fraudes, 1937, 30, 196.
- SUDRAUD P., Ann. Technol. Agric., 1958, no 2, 203.
- MARECA CORTES J., Atti Acc. Vite Vino, 1964, 16.
- GLORIES Y., Conn. vigne et Vin, 1984, 18, no 3, 195.
Wine turbidity (Type-IV)
OIV-MA-AS2-08 Wine turbidity (Determination by Nephelometric Analysis)
Type IV method
- Warning
Measurements of turbidity are largely dependent on the design of the equipment used. Therefore, comparative measurements from one instrument to another are not possible unless the same measuring principle is used.
The primary known sources of errors, which are linked to the type of turbidimeter employed, are:
- effect of stray light,
- effect of product color, especially in cases with low cloudiness values,
- electronic shifting due to aging electronic components,
- type of light source, photo detector and the dimensions and type of measurement the cell.
The present method uses a nephelometer incorporating a double beam with optical compensation design.
This category of instrument makes it possible to compensate for: electronic shift, fluctuations of mains voltage, and, in part, wine color. Furthermore, calibration is highly stable.
It should be noted that this method does not lend itself to a collation of data from various sources, given the impossibility of conducting an analysis in collaboration with others.
- Purpose
The purpose of this document is to describe an optical method capable of measuring the turbidity (or diffusion) index of wine.
- Scope of application
This method is used in the absence of instruments allowing a completely faithful duplication of measurements from one device to another, as well as full compensation for wine color. Therefore, findings are given for informational purposes only, and must be considered with caution.
Above all, this technique is intended for use in production, where it is the most objective criterion of the measurement of clarity.
This method, which cannot be validated accordingly to internationally recognized criteria, will be classified as class 41.
- General principle
Turbidity is an optical effect.
The diffusion index is an intrinsic property of liquids that makes it possible to describe their optical appearance. This optical effect is produced by the presence of extremely fine particles scattered in a liquid dispersion medium. The refraction index of these particles differs from that of the dispersion medium.
If a light is shown through a quantity of optically clean water placed in a container of known volume and the luminous flux diffused with respect to an incident beam is measured, the recorded value of this diffused flux will allow description of the molecular diffusion in the water.
If the value obtained for the water thus analyzed is greater than that of the molecular diffusion, which remains constant for a given wavelength, the same incident flux at the same angle measurement, in a tank of the same shape and at a given temperature, the difference can be attributed to the light diffused by solid, liquid or gaseous particles suspended in the water.
The measurement (taken as described) of the diffused luminous flux constitutes a nephelometric measurement.
- Definitions
5.1. Turbidity
Reduction of the transparency of a liquid due to the presence of undissolved substances.
5.2. Units of Measurement of the Turbidity Index
The unit of turbidity used is: NTU - Nephelometric Turbidity Unit, which is the value corresponding to the measurement of the light diffused by a standard formazine suspension prepared as described under point 6.2.2, at a 90° angle to the direction of the incident beam.
- Preparing the reference Formazine suspension ([1])
6.1. Reagents
All reagents must be of recognized analytical quality.
They must be stored in glass flasks.
6.1.1. Water for Preparing Control Solutions.
Soak a filter membrane with a pore size of 0.1 μm (like those used in bacteriology) for one hour in 100 ml of distilled water. Filter 250 ml distilled water twice through this membrane, and retain this water for preparation of standard solutions.
6.1.2. Formazine () Solutions
The compound known as formazine, whose formula is , is not commercially available. It can be produced using the following solutions:
- Solution A: Dissolve 10.0 g hexamethylene-tetramine in distilled water prepared according to the instructions in 6.1.1. Then fill to a volume of 100 ml using distilled water.
- Solution B: Dissolve 1.0 g of hydrazinium sulfate, , in distilled water prepared according to the instruction in 6.1.1. Then fill to a volume of 100 ml using distilled water prepared according to 6.1.1.
Warning: Hydrazinium sulfate is poisonous and may be carcinogenic.
6.2. Working Method
Mix 5 ml of Solution A and 5 ml of Solution B. Dilute the solution to a volume of 100 ml with water after 24 hours at 25 °C 3 °C (6.1.1).
The turbidity of this standard solution is 400 NTU.
This standard suspension will keep for approximately 4 weeks at room temperature in the dark.
By diluting to 1/400 with recently prepared distilled water, a turbidity of 1 NTU will be obtained.
This solution remains stable for one week only.
N.B.: Standard formazine solutions have been compared to standard polymer-based solutions. The differences observed may be considered negligible. Nonetheless, polymer-based standard solutions have the following drawbacks: they are very expensive and they have a limited useful life. They must be handled with care to avoid breaking the polymer particles, as breakage would alter the turbidity value. Polymer use is suggested as an alternative to formazine.
- Optical Measurement Principle
|
S1 |
Measurement principle:
- L1= Incident light beam
- L2= Beam after passing through sample
- P= Sample
- St= diffused light
- G/G1 = Limiting rays from the diffused light beam used for measurement
The diffused light should be observed at an angle of 90° to the direction of propagation of the incident beam.
-
Instrumentation
- Optical principle of the dual-beam and optical compensation nephelometer
|
A light source (1) powered by the electricity network projects a beam of light onto an oscillating mirror (2) which alternately reflects a measuring beam (3) and a comparison beam (4) at a rate of approximately 600 times per second.
The measuring beam (3) propagates through the fluid to be measured (5) while the comparison beam (4) propagates through an optically stable turbidity-comparison standard fluid (6).
The light diffused by the particles producing turbidity in the fluid (5) and the light diffused by the standard comparison solution (6) are alternately received by a photoelectric cell (7).
Accordingly, this cell receives a measuring beam (3) and a comparison (4) having the same frequency, but different whose luminous intensities.
The photoelectric cell (7) transforms these unequal luminous intensities into electric current which are in turn amplified (8) and fed to a synchronous motor (9) functioning as a servo-motor.
This motor uses a mechanical measuring diaphragm (10) to vary the intensity of the control beam, until the two beams strike the photoelectric cell with equal luminous intensity.
This equilibrium state allows the solid particle content of the fluid to be determined.
The absolute value of the measurement depends on the dimensions of the standard comparison beam and on the position of the diaphragm.
8.2. Characteristics
Note: In order to take these measurements, regardless of the color of the wine, the nephelometer must be equipped with an additional interferential filter allowing measurement at a wavelength of 620 nm. However, the interferential filter is not needed if the light source is an infrared one.
8.2.1. The width of the spectral band of the incident radiation should be less than or equal to 60 nm.
8.2.2. There should be no divergence in the parallelism of the incident radiation, and convergence must not exceed 1.5°.
8.2.3. The angle of measurement between the optical axis of the incident radiation and that of the diffused radiation should be 90° 2.5°.
8.2.4. The apparatus must not cause error due to stray light greater than:
- NTU of random light error
within a range of:
- 0 to 0.1 NTU.
- Operating method for measurement
9.1. Checking the Apparatus
Before taking any measurement or series of measurements, check to ensure the proper electrical and mechanical operation of the apparatus in accordance with the recommendations of the manufacturer.
9.2. Check Measurement Scale Adjustment
Before taking any measurement or series of measurements, use a previously calibrated instrument to check its measurement scale adjustment consistent with the principle underlying its design.
9.3. Cleaning the Measuring Unit
With the greatest care, clean the measuring tank before all analyses. Take all necessary precautions to avoid getting dust in the apparatus and especially in the measuring unit, before and during determination of the turbidity index.
9.4. Taking Measurements
The operating temperature should be between 15° and 25 °C (Take the temperature of the wine to be measured into consideration to ensure proper comparison). Prior to taking the measurement, carefully homogenize the product and, without making any abrupt movement that could create an emulsion, the flask holding the product to be analyze.
Carefully wash the measuring tank twice with a small amount of the product to be analyzed.
Carefully pour the product to be analyzed into the measuring tank, taking care to avoid any turbulence in the flow of the liquid, since this would lead to the formation of air bubbles. Carry out the test measurements.
Wait one minute if the index value is stable.
Record the resulting turbidity index.
- Expressing the results
The turbidity index of the wine undergoing analysis is recorded and expressed in:
- NTU
- * if turbidity is less than 1 NTU, round off to 0.01 NTU
- * if turbidity is between 1 NTU and 10 NTU, round off to 0.1 NTU
- *if turbidity is between 10 NTU and 100 NTU, round off to 1 NTU
- Test report
The test should contain the following information:
- reference to this method
- the results, expressed as indicated in 10
- any detail or occurrence that may have affected the findings.
Bibliography
- AFNOR, Standard NF EN 27027 (ISO 7027) - April 1994,"Water Quality = Turbidity Analysis"
- OIV, Compendium of International Methods for Spirits, Alcohols and the Aromatic Fractions in Beverages – 1994, "Turbidity – Nephelometric Analysis Method"
- SIGRIST PHOTOMETER SA, CH 6373 Ennetburgen, "Excerpts from technical instructions for nephelometers"
([1]) Care must be given to the precautions for handling, since Formazine is somewhat toxic.
Folin-Ciocalteu Index (Type-IV)
OIV-MA-AS2-10 Folin Ciocalteu Index
Type IV method
- Definition
The Folin-Ciocalteu index is the result obtained by applying the method described below.
- Principle
All phenolic compounds contained in wine are oxidized by Folin-Ciocalteu reagent. This reagent is formed from a mixture of phosphotungstic acid,, and phosphomolybdic acid, , which, after oxidation of the phenols, is reduced to a mixture of blue oxides of tungsten, , and molybdenum, . The blue coloration produced has a maximum absorption in the region of 750 nm, and is proportional to the total quantity of phenolic compounds originally present.
- Apparatus
Normal laboratory apparatus, in particular:
3.1. 100 mL volumetric flasks.
3.2. Spectrophotometer capable of operating at 750 nm.
-
Reagents
- Folin-Ciocalteu reagent
This reagent is available commercially in a form ready for use.
Alternatively it may be prepared as follows: dissolve 100 g of sodium tungstate, , and 25 g of sodium molybdate, , in 700 mL of distilled water. Add 50 mL phosphoric acid 85% (ρ20 = 1.71 g/mL), and 100 mL of concentrated hydrochloric acid (ρ20 = 1.19 g/mL). Bring to the boil and reflux for 10 hours. Then add 150 g of lithium sulfate, , and a few drops of bromine and boil for 15 minutes. Allow to cool and make up to one liter with distilled water.
4.2. Anhydrous sodium carbonate, Na2CO3, made up into a 20% (m/v) solution.
-
Procedure
- Red wine
Introduce the following into a 100 mL volumetric flask (3.1) strictly in the following order:
- 1 mL of the wine, previously diluted 1/5,
- 50 mL of distilled water,
- 5 mL of Folin-Ciocalteu reagent (4.1),
- 20 mL of sodium carbonate solution (4.2).
Bring to 100 mL with distilled water.
Mix to dissolve. Leave for 30 minutes for the reaction to stabilize. Determine the absorbance at 750 nm through a path length of 1 cm with respect to a blank prepared with distilled water in place of the wine.
If the absorbance is not in the region of 0.3 appropriate dilution should be made.
5.2. White wine
Carry out the same procedure with 1 mL of undiluted wine.
-
Expression of results
- Calculation
The result is expressed in the form of an index obtained by multiplying the absorbance by 100 for red wines diluted 1/5 (or by the corresponding factor for other dilutions) and by 20 for white wines.
6.2. Precision
The difference between the results of two determinations carried out simultaneously or very quickly one after the other by the same analyst must not be greater than 1. Good precision of results is aided by using scrupulously clean apparatus (volumetric flasks and spectrophotometer cells).
Chromatic Characteristics (Type-I)
OIV-MA-AS2-11 Determination of chromatic characteristics according to CIELab
Type I method
- Introduction
The colour of a wine is one of the most important visual features available to us, since it provides a considerable amount of highly relevant information.
Colour is a sensation that we perceive visually from the refraction or reflection of light on the surface of objects. Colour is light—as it is strictly related to it—and depending on the type of light (illuminating or luminous stimulus) we see one colour or another. Light is highly variable and so too is colour, to a certain extent.
Wine absorbs a part of the radiations of light that falls and reflects another, which reaches the eyes of the observer, making them experience the sensation of colour. For instance, the sensation of very dark red wines is almost entirely due to the fact that incident radiation is absorbed by the wine.
1.1. Scope
The purpose of this spectrophotometric method is to define the process of measuring and calculating the chromatic characteristics of wines and other beverages derived from trichromatic components: X, Y and Z, according to the Commission Internationale de l’Eclairage (CIE, 1976), by attempting to imitate real observers with regard to their sensations of colour.
1.2. Principle and definitions
The colour of a wine can be described using 3 attributes or specific qualities of visual sensation: tonality, luminosity and chromatism.
Tonality—colour itself—is the most characteristic: red, yellow, green or blue. Luminosity is the attribute of visual sensation according to which a wine appears to be more or less luminous. However, chromatism, or the level of colouring, is related to a higher or lower intensity of colour. The combination of these three concepts enables us to define the multiple shades of colour that wines present.
The chromatic characteristics of a wine are defined by the colorimetric or chromaticity coordinates (Fig. 1): clarity (L*), red/green colour component (a*), and blue/yellow colour component (b*); and by its derived magnitudes: chroma (C*), tone (H*) and chromacity [(a*, b*) or (C*, H*)]. In other words, this CIELab colour or space system is based on a sequential or continuous Cartesian representation of 3 orthogonal axes: L*, a* and b* (Fig. 2 and 3). Coordinate L* represents clarity (L* = 0 black and L* = 100 colourless), a* green/red colour component (a*>0 red, a*<0 green) and b* blue/yellow colour component (b*>0 yellow, b*<0 blue).
1.2.1. Clarity
Its symbol is L* and it is defined according to the following mathematical function:
|
Directly related to the visual sensation of luminosity.
1.2.2. Red/green colour component
Its symbol is a* and it is defined according to the following mathematical function:
(I) |
1.2.3. Yellow/blue colour component
Its symbol is b* and it is defined according to the following mathematical function:
(I) |
1.2.4. Chroma
The chroma symbol is C* and it is defined according to the following mathematical function:
|
1.2.5. Tone
The tone symbol is H*, its unit is the sexagesimal degree (º), and it is defined according to the following mathematical function:
|
1.2.6. Difference of tone between two wines
The symbol is ∆H* and it is defined according to the following mathematical function:
|
(I) See explanation Annex I
1.2.7. Overall colorimetric difference between two wines
The symbol is ∆E* and it is defined according to the following mathematical functions:
|
1.3. Reagents and products
Distilled water.
1.4. Apparatus and equipment
Customary laboratory apparatus and, in particular, the following:
1.4.1. Spectrophotometer to carry out transmittance measurements at a wavelength of between 300 and 800 nm, with illuminant D65 and observer placed at 10º. Use apparatus with a resolution equal to or higher than 5 nm and, where possible, with scan.
1.4.2. Computer equipment and suitable programme which, when connected to the spectrophotometer, will facilitate calculating colorimetric coordinates (L*, a* and b*) and their derived magnitudes (C* and H*).
1.4.3. Glass cuvettes, available in pairs, optical thickness 1, 2 and 10 mm.
1.4.4. Micropipettes for volumes between 0.020 and 2 ml.
1.5. Sampling and sample preparation
Sample taking must particularly respect all concepts of homogeneity and representativity.
If the wine is dull, it must be clarified by centrifugation. For young or sparkling wines, as much carbon dioxide as possible must be eliminated by vacuum stirring or using a sonicator.
1.6. Procedure
- Select the pair of cuvettes for the spectrophotometric reading, ensuring that the upper measurement limit within the linear range of the spectrophotometer is not exceeded. By way of indication, for white and rosé wines it is recommended to use cuvettes with 10 mm of optical thickness, and for red wines, cuvettes with 1 mm optical thickness.
After obtaining and preparing the sample, measure its transmittance from 380 to 780 nm every 5 nm, using distilled water as a reference in a cuvette with the same optical thickness, in order to establish the base line or the white line. Choose illuminant D65 and observer 10º
If the optical thickness of the reading cuvette is under 10 mm, the transmittance must be transformed to 10 mm before calculating: L*, a*, b*, C* and H*.
Summary:
Spectral measurements in transmittance from 780 to 380 nm |
Interval: 5 nm |
Cuvettes: use appropriately according to wine intensity: 1 cm (white and rosé wines) and 0.1 cm (red wines) |
Illuminant D65 |
Observer reference pattern 10º |
1.7. Calculations
The spectrophotometer must be connected to a computer programme to facilitate the calculation of the colorimetric coordinates (L*, a* and b*) and their derived magnitudes (C* and H*), using the appropriate mathematical algorithms.
In the event of a computer programme not being available, see Annex I on how to proceed.
1.8. Expression of results
The colorimetric coordinates of wine will be expressed according to the recommendations in the following table.
Colorimetric coordinates |
Symbol |
Unit |
Interval |
Decimals |
Clarity |
L* |
0-100 0 black 100 colourless |
1 |
|
Red/green colour component |
a* |
>0 red <0 green |
2 |
|
Yellow/blue colour component |
b* |
>0 yellow <0 blue |
2 |
|
Chroma |
C* |
2 |
||
Tone |
H* |
º |
0-360º |
2 |
1.9. Numerical Example
Figure 4 shows the values of the colorimetric coordinates and the chromaticity diagram of a young red wine for the following values:
X = 12.31; Y = 60.03 and Z = 10.24
L* = 29.2
a* = 55.08
b* = 36.10
C* = 66.00
H* = 33.26º
- Accuracy
The above data were obtained from two interlaboratory tests of 8 samples of wine with blind duplicates of progressive chromatic characteristics, in accordance with the recommendations of the harmonized protocol for collaborative studies, with a view to validating the method of analysis.
Colorimetric coordinate L* (clarity, 0-100)
Sample Identification |
A |
B |
C |
D |
E |
F |
G |
H |
Year of interlaboratory test |
2004 |
2002 |
2004 |
2004 |
2004 |
2004 |
2002 |
2004 |
No. of participating laboratories |
18 |
21 |
18 |
18 |
17 |
18 |
23 |
18 |
No. of laboratories accepted after aberrant value elimination |
14 |
16 |
16 |
16 |
14 |
17 |
21 |
16 |
Mean value () |
96.8 |
98.0 |
91.6 |
86.0 |
77.4 |
67.0 |
34.6 |
17.6 |
Repeatability standard deviation (sr) |
0.2 |
0.1 |
0.2 |
0.8 |
0.2 |
0.9 |
0.1 |
0.2 |
Relative repeatability standard deviation (RSDr) (%) |
0.2 |
0.1 |
0.3 |
1.0 |
0.3 |
1.3 |
0.2 |
1.2 |
Repeatability limit (r) (2.8 x sr) |
0.5 |
0.2 |
0.7 |
2.2 |
0.7 |
2.5 |
0.2 |
0.6 |
Reproducibility standard deviation (sR) |
0.6 |
0.1 |
1.2 |
2.0 |
0.8 |
4.1 |
1.0 |
1.0 |
Relative reproducibility standard deviation (RSDR) (%) |
0.6 |
0.1 |
1.3 |
2.3 |
1.0 |
6.1 |
2.9 |
5.6 |
Reproducibility limit (R) (2.8 x sR) |
1.7 |
0.4 |
3.3 |
5.5 |
2.2 |
11.5 |
2.8 |
2.8 |
Colorimetric coordinate a* (green/red)
Sample Identification |
A |
B |
C |
D |
E |
F |
G |
H |
Year of interlaboratory |
2004 |
2002 |
2004 |
2004 |
2004 |
2004 |
2002 |
2004 |
No. of participating laboratories |
18 |
21 |
18 |
18 |
17 |
18 |
23 |
18 |
No. of laboratories accepted after aberrant value elimination |
15 |
15 |
14 |
15 |
13 |
16 |
23 |
17 |
Mean value () |
-0.26 |
-0.86 |
2.99 |
11.11 |
20.51 |
29.29 |
52.13 |
47.55 |
Repeatability standard deviation (sr) |
0.17 |
0.01 |
0.04 |
0.22 |
0.25 |
0.26 |
0.10 |
0.53 |
Relative repeatability standard deviation (RSDr) (%) |
66.3 |
1.4 |
1.3 |
2.0 |
1.2 |
0.9 |
0.2 |
1.1 |
Repeatability limit (r) (2.8 x sr) |
0.49 |
0.03 |
0.11 |
0.61 |
0.71 |
0.72 |
0.29 |
1.49 |
Reproducibility standard deviation (sR) |
0.30 |
0.06 |
0.28 |
0.52 |
0.45 |
0.98 |
0.88 |
1.20 |
Relative reproducibility standard deviation (RSDR) (%) |
116.0 |
7.5 |
9.4 |
4.7 |
2.2 |
3.4 |
1.7 |
2.5 |
Reproducibility limit (R) (2.8 x sR) |
0.85 |
0.18 |
0.79 |
1.45 |
1.27 |
2.75 |
2.47 |
3.37 |
Colorimetric coordinate b* (blue/yellow)
Sample Identification |
A |
B |
C |
D |
E |
F |
G |
H |
Year of interlaboratory |
2004 |
2002 |
2004 |
2004 |
2004 |
2004 |
2002 |
2004 |
No. of participating laboratories |
17 |
21 |
17 |
17 |
17 |
18 |
23 |
18 |
No. of laboratories accepted after aberrant value elimination |
15 |
16 |
13 |
14 |
16 |
18 |
23 |
15 |
Mean value () |
10.95 |
9.04 |
17.75 |
17.10 |
19.68 |
26.51 |
45.82 |
30.07 |
Repeatability standard deviation (sr) |
0.25 |
0.03 |
0.08 |
1.08 |
0.76 |
0.65 |
0.15 |
0.36 |
Relative repeatability standard deviation (RSDr) (%) |
2.3 |
0.4 |
0.4 |
6.3 |
3.8 |
2.5 |
0.3 |
1.2 |
Repeatability limit (r) (2.8 x sr) |
0.71 |
0.09 |
0.21 |
3.02 |
2.12 |
1.83 |
0.42 |
1.01 |
Reproducibility standard deviation (sR) |
0.79 |
0.19 |
0.53 |
1.18 |
3.34 |
2.40 |
1.44 |
1.56 |
Relative reproducibility standard deviation (RSDR) (%) |
7.2 |
2.1 |
3.0 |
6.9 |
16.9 |
9.1 |
3.1 |
5.2 |
Reproducibility limit (R) (2.8 x sR) |
2.22 |
0.53 |
1.47 |
3.31 |
9.34 |
6.72 |
4.03 |
4.38 |
Bibliography
- Vocabulaire International de l'Éclairage. Publication CIE 17.4.- Publication I.E.C. 50(845). CEI(1987). Genève. Suisse.
- Colorimetry, 2nd Ed.- Publication CIE 15.2 (1986) Vienna.
- Colorimetry, 2nd Ed.- Publication CIE 15.2 (1986) Vienna.
- Kowaliski P. – Vision et mesure de la couleur. Masson ed. Paris 1990
- Wiszecki G. And W.S.Stiles, Color Science, Concepts and Methods, Quantitative Data and Formulae, 2nd Ed. Wiley, New York 1982
- Sève R. .- Physique de la couleur. Masson. Paris (1996)
- Echávarri J.F., Ayala F. et Negueruela A.I. .-Influence du pas de mesure dans le calcul des coordonnées de couleur du vin. Bulletin de l'OIV 831-832, 370-378 (2000)
- I.R.A.N.O.R . Magnitudes Colorimetricas. Norma UNE 72-031-83
- Bertrand A.- Mesure de la couleur. F.V. 1014 2311/190196
- Fernández, J.I.; Carcelén, J.C.; Martínez, A. III Congreso Nacional De Enologos, 1.997. Caracteristicas cromaticas de vinos rosados y tintos de la cosecha de 1996 en la region de murcia
- Cagnaso E..- Metodi Oggettivi per la definizione del colore del vino. Quaderni della Scuoladi Specializzazione in Scienze Viticole ed Enologiche. Universidad di Torino. 1997
- Ortega A.P., Garcia M.E., Hidalgo J., Tienda P., Serrano J. – 1995- Identificacion y Normalizacion de los colores del vino. Carta de colores. Atti XXI Congreso Mundial de la Viña y el Vino, Punta del Este. ROU 378-391
- Iñiguez M., Rosales A., Ayala R., Puras P., Ortega A.P.- 1995 - La cata de color y los parametros CIELab, caso de los vinos tintos de Rioja. Atti XXI Congreso Mundial de la Viña y el Vino, Punta del Este.ROU 392-411
- Billmeyer, F.W. jr. and M. Saltzman: Principles of Color. Technology, 2. Auflage, New York; J. Wiley and Sons, 1981.
Appendix 1
In formal terms, the trichromatic components X, Y, Z of a colour stimulus result from the integration, throughout the visible range of the spectrum, of the functions
obtained by multiplying the relative spectral curve of the colour stimulus by the colorimetric functions of the reference observer. These functions are always obtained by experiment. It is not possible, therefore to calculate the trichromatic components directly by integration. Consequently, the approximate values are determined by replacing these integrals by summations on finished wavelength intervals.
|
T (λ) is the measurement of the transmittance of the wine measured at the wavelength λ expressed at 1 cm from the optical thickness. |
|
() is the interval between the value of λ at which T (λ)is measured |
|
S (λ): coefficients that are a function of λ and of the illuminant (Table 1). |
|
: coefficients that are a function of and of the observer. (Table 1) |
The values of Xn, Yn, and Zn represent the values of the perfect diffuser under an illuminant and a given reference observer. In this case, the illuminant is D65 and the observer is higher than 4 degrees.
= 94.825; = 100; = 107.381
This roughly uniform space is derived from the space CIEYxy, in which the trichromatic components X, Y, Z are defined.
The coordinates L*, a*and b*are calculated based on the values of the trichromatic components X, Y, Z, using the following formulae.
L* = 116 (Y / Yn)1/3 16 |
where Y/Yn > 0.008856 |
|||
L* = 903.3 (Y / Yn) |
where Y / Yn < ó = 0.008856 |
|||
a* = 500 [ f(X / ) f(Y / Yn) |
||||
b* = 200 [f(Y / Yn) f(Z / Zn) |
||||
f(X / Xn) = (X / )1/3 |
where (X / Xn) > 0.008856 |
|||
f(X / Xn) = 7.787 (X / Xn) + 16 / 166 |
where (X / Xn) < ó = 0.008856 |
|||
f(Y / Yn) = (Y / Yn)1/3 |
where (Y / Yn) > 0.008856 |
|||
f(Y / Yn) = 7.787 (Y / Yn) + 16 / 116 |
where (Y / Yn) < ó = 0.008856 |
|||
f(Z / Zn) = (Z / Zn)1/3 |
where (Z / Zn) > 0.008856 |
|||
f(Z / Zn) = 7.787 (Z / Zn) + 16 / 116 |
where (Z / Zn) < ó = 0.008856 |
|||
The total colorimetric difference between two colours is given by the CIELAB colour difference
|
In the CIELAB space it is possible to express not only overall variations in colour, but also in relation to one or more of the parameters L*, a* and b*. This can be used to define new parameters and to relate them to the attributes of the visual sensation.
Clarity, related to luminosity, is directly represented by the value of L*.
Chroma: defines the chromaticness.
The angle of hue: H* = tg-1 (b*/a*) (expressed in degrees); related to hue.
The difference in hue:
For two unspecified colours, C* represents their difference in chroma; L*, their difference in clarity, and E*, their overall variation in colour. We thus have:
Table 1.
Wavelength (λ) nm. |
|
|
|
|
||||||
380 |
50.0 |
0.0002 |
0.0000 |
0.0007 |
||||||
385 |
52.3 |
0.0007 |
0.0001 |
0.0029 |
||||||
390 |
54.6 |
0.0024 |
0.0003 |
0.0105 |
||||||
395 |
68.7 |
0.0072 |
0.0008 |
0.0323 |
||||||
400 |
82.8 |
0.0191 |
0.0020 |
0.0860 |
||||||
405 |
87.1 |
0.0434 |
0.0045 |
0.1971 |
||||||
410 |
91.5 |
0.0847 |
0.0088 |
0.3894 |
||||||
415 |
92.5 |
0.1406 |
0.0145 |
0.6568 |
||||||
420 |
93.4 |
0.2045 |
0.0214 |
0.9725 |
||||||
425 |
90.1 |
0.2647 |
0.0295 |
1.2825 |
||||||
430 |
86.7 |
0.3147 |
0.0387 |
1.5535 |
||||||
435 |
95.8 |
0.3577 |
0.0496 |
1.7985 |
||||||
440 |
104.9 |
0.3837 |
0.0621 |
1.9673 |
||||||
445 |
110.9 |
0.3867 |
0.0747 |
2.0273 |
||||||
450 |
117.0 |
0.3707 |
0.0895 |
1.9948 |
||||||
455 |
117.4 |
0.3430 |
0.1063 |
1.9007 |
||||||
460 |
117.8 |
0.3023 |
0.1282 |
1.7454 |
||||||
465 |
116.3 |
0.2541 |
0.1528 |
1.5549 |
||||||
470 |
114.9 |
0.1956 |
0.1852 |
1.3176 |
||||||
475 |
115.4 |
0.1323 |
0.2199 |
1.0302 |
||||||
480 |
115.9 |
0.0805 |
0.2536 |
0.7721 |
||||||
485 |
112.4 |
0.0411 |
0.2977 |
0.5701 |
||||||
490 |
108.8 |
0.0162 |
0.3391 |
0.4153 |
||||||
495 |
109.1 |
0.0051 |
0.3954 |
0.3024 |
||||||
500 |
109.4 |
0.0038 |
0.4608 |
0.2185 |
||||||
505 |
108.6 |
0.0154 |
0.5314 |
0.1592 |
||||||
510 |
107.8 |
0.0375 |
0.6067 |
0.1120 |
||||||
515 |
106.3 |
0.0714 |
0.6857 |
0.0822 |
||||||
520 |
104.8 |
0.1177 |
0.7618 |
0.0607 |
||||||
525 |
106.2 |
0.1730 |
0.8233 |
0.0431 |
||||||
530 |
107.7 |
0.2365 |
0.8752 |
0.0305 |
||||||
535 |
106.0 |
0.3042 |
0.9238 |
0.0206 |
||||||
540 |
104.4 |
0.3768 |
0.9620 |
0.0137 |
||||||
545 |
104.2 |
0.4516 |
0.9822 |
0.0079 |
||||||
550 |
104.0 |
0.5298 |
0.9918 |
0.0040 |
||||||
555 |
102.0 |
0.6161 |
0.9991 |
0.0011 |
||||||
560 |
100.0 |
0.7052 |
0.9973 |
0.0000 |
||||||
565 |
98.2 |
0.7938 |
0.9824 |
0.0000 |
||||||
570 |
96.3 |
0.8787 |
0.9556 |
0.0000 |
||||||
575 |
96.1 |
0.9512 |
0.9152 |
0.0000 |
||||||
580 |
95.8 |
1.0142 |
0.8689 |
0.0000 |
||||||
585 |
92.2 |
1.0743 |
0.8256 |
0.0000 |
||||||
590 |
88.7 |
1.1185 |
0.7774 |
0.0000 |
||||||
595 |
89.3 |
1.1343 |
0.7204 |
0.0000 |
||||||
600 |
90.0 |
1.1240 |
0.6583 |
0.0000 |
||||||
605 |
89.8 |
1.0891 |
0.5939 |
0.0000 |
||||||
610 |
89.6 |
1.0305 |
0.5280 |
0.0000 |
||||||
615 |
88.6 |
0.9507 |
0.4618 |
0.0000 |
||||||
620 |
87.7 |
0.8563 |
0.3981 |
0.0000 |
||||||
625 |
85.5 |
0.7549 |
0.3396 |
0.0000 |
||||||
630 |
83.3 |
0.6475 |
0.2835 |
0.0000 |
||||||
635 |
83.5 |
0.5351 |
0.2283 |
0.0000 |
||||||
640 |
83.7 |
0.4316 |
0.1798 |
0.0000 |
||||||
645 |
81.9 |
0.3437 |
0.1402 |
0.0000 |
||||||
650 |
80.0 |
0.2683 |
0.1076 |
0.0000 |
||||||
655 |
80.1 |
0.2043 |
0.0812 |
0.0000 |
||||||
660 |
80.2 |
0.1526 |
0.0603 |
0.0000 |
||||||
665 |
81.2 |
0.1122 |
0.0441 |
0.0000 |
||||||
670 |
82.3 |
0.0813 |
0.0318 |
0.0000 |
||||||
675 |
80.3 |
0.0579 |
0.0226 |
0.0000 |
||||||
680 |
78.3 |
0.0409 |
0.0159 |
0.0000 |
||||||
685 |
74.0 |
0.0286 |
0.0111 |
0.0000 |
||||||
690 |
69.7 |
0.0199 |
0.0077 |
0.0000 |
||||||
695 |
70.7 |
0.0138 |
0.0054 |
0.0000 |
||||||
700 |
71.6 |
0.0096 |
0.0037 |
0.0000 |
||||||
705 |
73.0 |
0.0066 |
0.0026 |
0.0000 |
||||||
710 |
74.3 |
0.0046 |
0.0018 |
0.0000 |
||||||
715 |
68.0 |
0.0031 |
0.0012 |
0.0000 |
||||||
720 |
61.6 |
0.0022 |
0.0008 |
0.0000 |
||||||
725 |
65.7 |
0.0015 |
0.0006 |
0.0000 |
||||||
730 |
69.9 |
0.0010 |
0.0004 |
0.0000 |
||||||
735 |
72.5 |
0.0007 |
0.0003 |
0.0000 |
||||||
740 |
75.1 |
0.0005 |
0.0002 |
0.0000 |
||||||
745 |
69.3 |
0.0004 |
0.0001 |
0.0000 |
||||||
750 |
63.6 |
0.0003 |
0.0001 |
0.0000 |
||||||
755 |
55.0 |
0.0002 |
0.0001 |
0.0000 |
||||||
760 |
46.4 |
0.0001 |
0.0000 |
0.0000 |
||||||
765 |
56.6 |
0.0001 |
0.0000 |
0.0000 |
||||||
770 |
66.8 |
0.0001 |
0.0000 |
0.0000 |
||||||
775 |
65.1 |
0.0000 |
0.0000 |
0.0000 |
||||||
780 |
63.4 |
0.0000 |
0.0000 |
0.0000 |
||||||
|
Figure 1. Diagram of colourimetric coordinates according to Commission Internationale de l’Eclairage (CIE, 1976) |
|
Figure 2. CIELab colourspace, based on a sequential or 3 orthogonal axis continual Cartesian representation L*, a* y b* |
|
Figure 3. Sequential diagram and/or continuation of a and b colourimetric coordinates and derived magnitude, such as tone (H*) |
|
Figure 4. Representation of colour of young red wine used as an example in Chapter 1.8 shown in the CIELab three dimensional diagram. |
Method for 18O/16O isotope ratio determination of water in wines and must (Type-II)
OIV-MA-AS2-12 Method for isotope ratio determination of water in wines and must
Type II method
- Scope
The method describes the determination of the 18O/16O isotope ratio of water from wine and must after equilibration with CO2, using the isotope ratio mass spectrometry (IRMS).
- Reference standards
ISO 5725:1994: Accuracy (trueness and precision) of measurement methods and results: Basic method for the determination of repeatability and reproducibility of a standard measurement method.
- V-SMOW: Vienna-Standard Mean Ocean Water ( = = 0.0020052)
- GISP Greenland Ice Sheet Precipitation
- SLAP Standard Light Antarctic Precipitation
- Definitions
Isotope ratio of oxygen 18 to oxygen 16 for a given sample
δ18OV-SMOW Relative scale for the expression of the isotope ratio of oxygen 18 to oxygen 16 for a given sample. δ18OV-SMOW is calculated using the following equation:
|
using the V-SMOW as standard and as reference point for the relative δ scale.
- BCR: Community Bureau of Reference
- IAEA: International Atomic Energy Agency (Vienna, Austria)
- IRMM: Institute for Reference Materials and Measurements
- IRMS: Isotope Ratio Mass Spectrometry
- m/z: mass to charge ratio
- NIST: National Institute of Standards & Technology
- RM: Reference Material
- Principle
The technique described thereafter is based on the isotopic equilibration of water in samples of wine or must with a CO2 standard gas according to the following isotopic exchange reaction:
After equilibration the carbon dioxide in the gaseous phase is used for analysis by means of Isotopic Ratio Mass Spectrometry (IRMS) where the isotopic ratio is determined on the CO2 resulting from the equilibration.
- Reagents and materials
The materials and consumables depend on the method used (see chapter 6). The systems generally used are based on the equilibration of water in wine or must with .
The following reference materials, working standards and consumables can be used:
5.1. Reference materials
Name |
issued by |
δ18O versus V-SMOW |
V-SMOW, RM 8535 |
IAEA / NIST |
0 ‰ |
BCR-659 |
IRMM |
-7.18 ‰ |
GISP, RM 8536 |
IAEA / NIST |
-24.78 ‰ |
SLAP, RM 8537 |
IAEA / NIST |
-55.5 ‰ |
5.2. Working Standards
5.2.1. Carbon dioxide as a secondary reference gas for measurement (CAS 00124-38-9).
5.2.2. Carbon dioxide used for equilibration (depending on the instrument this gas could be the same as 5.2.1 or in the case of continuous flow systems cylinders containing gas mixture helium-carbon dioxide can also be used)
Working Standards with calibrated δ18 values traceable to international reference materials.
5.3. Consumables
Helium for analysis (CAS 07440-59-7)
- Apparatus
6.1. Isotope ratio mass spectrometry (IRMS)
The Isotope ratio mass spectrometer (IRMS) enables the determination of the relative contents of 18O of CO2 gas naturally occurring with an internal accuracy of 0.05%. Internal accuracy here is defined as the difference between 2 measurements of the same sample of CO2.
The mass spectrometer used for the determination of the isotopic composition of CO2 gas is generally equipped with a triple collector to simultaneously measure the following ion currents:
- m/z = 44 ()
- m/z = 45 ( and )
- m/z = 46 (, and )
By measuring the corresponding intensities, the 18O/16O isotopic ratio is determined from the ratio of intensities of m/z = 46 and m/z = 44 after corrections for isobaric species ( and ) whose contributions can be calculated from the actual intensity observed for m/z= 45 and the usual isotopic abundances for and in Nature.
The isotope ratio mass spectrometry must either be equipped with:
- a double introduction system (dual inlet system) to alternately measure the unknown sample and a reference standard.
- or a continuous flow system that transfers quantitatively the CO2 from the sample vials after equilibration but also the CO2 standard gas into the mass spectrometer.
6.2. Equipment and Materials
All equipments and materials used must meet stated requirements of the used method / apparatus (as specified by the manufacturer). However, all equipments and materials can be replaced by items with similar performance.
6.2.1. Vials with septa appropriate for the used system
6.2.2. Volumetric pipettes with appropriate tips
6.2.3. Temperature controlled system to carry out the equilibration at constant temperature, typically within 1 °C
6.2.4. Vacuum pump (if needed for the used system)
6.2.5. Autosampler (if needed for the used system)
6.2.6. Syringes for sampling (if needed for the used system)
6.2.7. GC Column to separate CO2 from other elementary gases (if needed for the used system)
6.2.8. Water removal device (e.g. cryo-trap, selective permeable membranes)
- Sampling
Wine and must samples as well as reference materials are used for analysis without any pre-treatment. In the case of the possible fermentation of the sample, benzoic acid (or another anti-fermentation product) should be added or filtered with a with a 0,22 μm pore diameter filter.
Preferably, the reference materials used for calibration and drift-correction should be placed at the beginning and at the end of the sequence and inserted after every ten samples.
- Procedure
The descriptions that follow refer to procedures generally used for the determination of the 18O/16O isotopic ratios by means of equilibration of water with a CO2 working standard and the subsequent measurement by IRMS. These procedures can be altered according to changes of equipment and instrumentation provided by the manufacturers as various kind of equilibration devices are available, implying various conditions of operation. Two main technical procedures can be used for introduction of CO2 into the IRMS either through a dual inlet system or using a continuous flow system. The description of all these technical systems and of the corresponding conditions of operation is not possible. Note: all values given for volumes, temperatures, pressures and time periods are only indicative. Appropriate values must be obtained from specifications provided by the manufacturer and/or determined experimentally.
8.1. Manual equilibration
A defined volume of the sample/standard is transferred into a flask using a pipette. The flask is then attached tightly to the manifold.
Each manifold is cooled down to below - 80 °C to deep-freeze the samples (manifold equipped with capillary opening tubes do not require this freezing step). Subsequently, the whole system is evacuated. After reaching a stable vacuum the gaseous CO2 working standard is allowed to expand into the various flasks. For the equilibration process each manifold is placed in a temperature controlled water-bath typically at 25°C ( 1 °C) for 12 hours (overnight). It is crucial that the temperature of the water-bath is kept constant and homogeneous.
After the equilibration process is completed, the resulting is transferred from the flasks to the sample side bellow of the dual inlet system. The measurements are performed by comparing several times the ratios of the contained in the sample side and the standard side ( reference standard gas) of the dual inlet. This approach is repeated till the last sample of the sequence has been measured.
8.2. Use of an automatic equilibration apparatus
A defined volume of the sample/standard is transferred into a vial using a pipette. The sample vials are attached to the equilibration system and cooled down to below - 80 °C to deep-freeze the samples (systems equipped with capillary opening tubes do not require this freezing step). Subsequently, the whole system is evacuated.
After reaching a stable vacuum the gaseous working standard is expanded into the vials. Equilibrium is reached at a temperature of typically 22 1 °C after a minimum period of 5 hours and with moderate agitation (if available). Since the equilibration duration depends on various parameters (e.g. the vial geometry, temperature, applied agitation ...), the minimum equilibrium time should be determined experimentally.
After the equilibration process is completed, the resulting is transferred from the vials to the sample side bellow of the dual inlet system. The measurements are performed by comparing several times the ratios of the contained in the sample side and the standard side ( reference standard gas) of the dual inlet. This approach is repeated till the last sample of the sequence has been measured.
8.3. Manual preparation manual and automatic equilibration and analysis with a dual inlet IRMS
A defined volume of sample / standard (eg. 200 μL) is introduced into a vial using a pipette. The open vials are then placed in a closed chamber filled with the used for equilibration (5.2.2). After several purges to eliminate any trace of air, the vials are closed and then placed on the thermostated plate of the sample changer. The equilibration is reached after at least 8 hours at 40 °C. Once the process of equilibration completed, the obtained is dried and then transferred into the sample side of the dual inlet introduction system. The measurements are performed by comparing several times the ratios of the contained in the sample side and the standard side ( reference standard gas) of the dual inlet. This approach is repeated till the last sample of the sequence has been measured.
8.4. Use of an automatic equilibration apparatus coupled to a continuous flow system
A defined volume of the sample/standard is transferred into a vial using a pipette. The sample vials are placed into a temperature controlled tray.
Using a gas syringe the vials are flushed with mixture of He and . The remains in the headspace of the vials for equilibration.
Equilibrium is reached at a temperature typically of 30 1 °C after a minimum period of 18 hours.
After the equilibration process is completed the resulting is transferred by means of the continuous flow system into the ion source of the mass spectrometer. reference gas is also introduced into the IRMS by means of the continuous flow system. The measurement is carried out according to a specific protocol for each kind of equipment.
- Calculation
The intensities for m/z = 44, 45, 46 are recorded for each sample and reference materials analysed in a batch of measurements. The isotope ratios are then calculated by the computer and the software of the IRMS instrument according to the principles explained in section 6.1. In practice the isotope ratios are measured against a working standard previously calibrated against the V-SMOW. Small variations may occur while measuring on line due to changes in the instrumental conditions. In such a case the δ of the samples must be corrected according to the difference in the δ value from the working standard and its assigned value, which was calibrated beforehand against V-SMOW. Between two
measurements of the working standard, the variation is the correction applied to the sample results that may be assumed to be linear. Indeed, the working standard must be measured at the beginning and at the end of all sample series. Therefore a correction can be calculated for each sample using linear interpolation between two values (the difference between the assigned value of the working standard and the measurements of the obtained values).
The final results are presented as relative δV-SMOW values expressed in ‰.
δV-SMOW values are calculated using the following equation:
|
The δ value normalized versus the V-SMOW/SLAP scale is calculated using the following equation:
|
The δV-SMOW value accepted for SLAP is -55.5‰ (see also 5.1).
- Precision
The repeatability (r) is equal to 0.24 ‰.
The reproducibility (R) is equal to 0.50 ‰.
Summary of statistical results
General average (‰) |
Standard deviation of repeatability (‰) sr |
Repeatability (‰) r |
Standard deviation of reproducibility (‰) sR |
Reproducibility (‰) R |
||
Water |
|
|
|
|
|
|
Sample 1 |
-8.20 |
0.068 |
0.19 |
0.171 |
0.48 |
|
Sample 2 |
-8.22 |
0.096 |
0.27 |
0.136 |
0.38 |
|
Wine N° 1 |
||||||
Sample 5 |
6.87 |
0.098 |
0.27 |
0.220 |
0.62 |
|
Sample 8 |
6.02 |
0.074 |
0.21 |
0.167 |
0.47 |
|
Sample 9 |
5.19 |
0.094 |
0.26 |
0.194 |
0.54 |
|
Sample 4 |
3.59 |
0.106 |
0.30 |
0.205 |
0.57 |
|
Wine N° 2 |
||||||
Sample 3 |
-1.54 |
0.065 |
0.18 |
0.165 |
0.46 |
|
Sample 6 |
-1.79 |
0.078 |
0.22 |
0.141 |
0.40 |
|
Sample 7 |
-2.04 |
0.089 |
0.25 |
0.173 |
0.49 |
|
Sample 10 |
-2.61 |
0.103 |
0.29 |
0.200 |
0.56 |
|
- Inter-laboratories studies
Bulletin de l’O.I.V. janvier-février 1997, 791-792, p.53 - 65.
- Bibliography
- [1] Allison, C.E., Francey, R.J. and Meijer., H.A., (1995) Recommendations for the Reporting of Stable Isotopes Measurements of carbon and oxygen. Proceedings of a consultants meeting held in Vienna, 1 - 3. Dec. 1993, IAEA-TECDOC-825, 155-162, Vienna, Austria.
- [2] Baertschi, P., (1976) Absolute 18O Content of Standard Mean Ocean Water. Earth and Planetary Science Letters, 31, 341-344.
- [3] Breas, O,. Reniero, F. and Serrini, G., (1994) Isotope Ratio Mass Spectrometry: Analysis of wines from different European Countries. Rap. Comm. Mass Spectrom., 8, 967-987.
- [4] Craig, H., (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12, 133-149.
- [5] Craig, H., (1961) Isotopic Variations in Meteoric Waters. Science, 133, 1702-1703[6] Craig, H., (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133, 1833-1834.
- [7] Coplen, T., (1988) Normalization of oxygen and hydrogen data. Chemical Geology (Isotope Geoscience Section), 72, 293-297
- [8] Coplen, T. and Hopple, J., (1995) Audit of V-SMOW distributed by the US National Institute of Standards and Technology. Proceedings of a consultants meeting held in Vienna, 1 - 3. Dec. 1993, IAEA-TECDOC-825, 35-38 IAEA, Vienna, Austria.
- [9] Dunbar, J., (1982 Detection of added water and sugar in New Zealand commercial wines.). Elsevier Scientific Publishing Corp. Edts. Amsterdam, 1495-501.
- [10] Epstein, S. and Mayeda, T. (1953) Variations of the 18O/16O ratio in natural waters. Geochim. Cosmochim. Acta, 4, 213 .
- [11] Förstel, H. (1992) Projet de description d’une méthode : variation naturelle du rapport des isotopes 16O et 18O dans l’eau comme méthode d’analyse physique du vin en vue du contrôle de l’origine et de l’addition d’eau. OIV, FV n° 919, 1955/220792.
- [12] Gonfiantini, R., (1978) Standards for stable isotope measurements in natural compounds. Nature, 271, 534-536.
- [13] Gonfiantini, R., (1987) Report on an advisory group meeting on stable isotope reference samples for geochemical and hydrochemical investigations. IAEA, Vienna, Austria.
- [14] Gonfiantini, R., Stichler, W. and Rozanski, K., (1995) Standards and Intercomparison Materials distributed by the IAEA for Stable Isotopes Measurements. Proceedings of a consultants meeting held in Vienna, 1 - 3. Dec. 1993, IAEA-TECDOC-825, 13-29 Vienna, Austria.
- [15] Guidelines for Collaborative Study Procedures (1989) J. Assoc. Off. Anal. Chem., 72, 694-704.
- [16] Martin, G.J., Zhang, B.L., Day, M. and Lees, M., (1993) Authentification des vins et des produits de la vigne par utilisation conjointe des analyses élémentaire et isotopique. OIV, F.V., n°917, 1953/220792.
- [17] Martin, G.J., Förstel, H. and Moussa, I. (1995) La recherche du mouillage des vins par analyse isotopique 2H et 18O. OIV, FV n° 1006, 2268/240595
- [18] Martin, G.J. (1996) Recherche du mouillage des vins par la mesure de la teneur en 18O de l’eau des vins. OIV, FV n° 1018, 2325/300196.
- [19] Martin, G.J. and Lees, M., (1997) Détection de l’enrichissement des vins par concentration des moûts au moyen de l’analyse isotopique 2H et 18O de l’eau des vins. OIV, FV n° 1019, 2326/300196.
- [20] Moussa, I., (1992) Recherche du mouillage dans les vins par spectrométrie de masse des rapports isotopiques (SMRI). OIV, FV n°915, 1937/130592.
- [21] Werner, R.A. and Brand, W., (2001) Reference Strategies and techniques in stable isotope ratio analysis. Rap. Comm. Mass Spectrom., 15, 501-519.
- [22] Zhang, B.L., Fourel, F., Naulet, N. and Martin, G.J., (1992) Influence de l’expérimentation et du traitement de l’échantillon sur la précision et la justesse des mesures des rapports isotopiques (D/H) et (18O/16O). OIV, F.V. n° 918, 1954/220792.