

RESOLUTION OIV-OENO 566-2016

BOISSONS AVEC UNE FAIBLE TENEUR EN ALCOOL - MISE A JOUR DE LA METHODE OIV-MA-AS312-01A

L'Assemblée Générale

CONSIDERANT l'article 2, paragraphe 2 IV de la convention datée du 3 Avril, 2001, portant création de l'Organisation Internationale de la Vigne et du Vin,

CONSIDERANT les travaux de la Sous-commission Méthodes d'analyses dans sa session de mars 2014,

DECIDE sur proposition de la Commission II « Œnologie » de modifier la méthode OIV-MA-AS312-01A « Titre alcoométrique volumique » du « Recueil des méthodes internationales d'analyse des vins et des moûts »:

DECIDE, Au paragraphe 3, « **Obtention du distillat** », ajouter un sous-paragraphe concernant **les boissons avec une faible teneur en alcool, selon les modifications suivantes :**

- D'insérer au texte actuel du paragraphe 3.4 le sous-titre suivant : mode opératoire pour des boissons avec un TAV supérieur à 1,5 % vol. et de renuméroter ce paragraphe 3.4.1
- Ajouter le sous paragraphe 3.4.2 suivant :

Mode opératoire pour des boissons avec un TAV inférieur ou égale à 1,5 % vol.

Prélever à l'aide d'une fiole jaugée un volume de boisson de **200 mL**. Noter la température de la boisson. Le verser dans le ballon de l'appareil à distiller ou dans le barboteur de l'appareil à entraînement à la vapeur d'eau. Rincer la fiole jaugée à quatre reprises avec 5 mL d'eau que l'on ajoute dans le ballon ou dans le barboteur.

Ajouter 10 mL de suspension d'hydroxyde de calcium 2 M et, dans le cas de la distillation, si cela est nécessaire, un régulateur d'ébullition (pierre ponce, etc...). Recueillir, dans une fiole jaugée de 100 mL, un volume de distillat égal environ à 75 mL dans le cas de la distillation ou de 98-99 mL dans le cas de l'entraînement à la vapeur d'eau. Compléter à 100 mL avec de l'eau distillée, le distillat étant à une température identique à la température initiale à \pm 2 °C près. Mélanger avec précaution, par un mouvement circulaire.

• Dans les paragraphes 4A 4B 4C, ajouter au point « Expression des résultats » (3.1 pour le paragraphe 4A, 1.9 pour le paragraphe 4B, 1.7.6 pour le paragraphe 4C la phrase suivante :

Le titre alcoométrique volumique de la boisson avec une faible teneur en alcool, dont le TAV est inférieur à 1,5 % vol., est égal à :

TAV= TAVD /2, étant TAVD le titre alcoométrique du distillat.

Il est exprimé en « % vol. ». Le résultat est donné avec deux décimales. Les paramètres de validation des boissons avec une faible teneur en alcool sont donnés en annexe

• Ajouter l'annexe concernant les paramètres de validation relatifs à la mesure du TAV des boissons avec une faible teneur en alcool:

EN ANNEXE

Validation

Ce document présente les résultats de l'étude de validation sur la méthode pour les boissons avec une faible teneur en alcool (mis à jour)

L'étude a été réalisée en accord avec les documents OIV MA-F-AS1-08-FIDMET et MA-F-AS1-09-PROPER

1/ Echantillons

N° échantillon	1	2	3	4	5	6
Nature	Jus de raisin	Boisson obtenue par désalcoolisation du vin	Boisson obtenue par désalcoolisation partielle du vin	Jus de raisin partiellement fermenté	Cidre	Boisson à base de vin
Valeur de TAV approximative % par Vol.	< 0,5	0,5	1,5	2,5	4,5	6,5

Les échantillons ont été adressés aux laboratoires participants en appliquant le principe du double aveugle.

2/ Analyses

Chacun des 12 échantillons reçus par les laboratoires a été analysé par distillation simple ou avec entrainement à la vapeur selon les deux procédures suivantes :

- Méthode de référence OIV avec mise en œuvre de 200 mL et récupération de 200 mL de distillat.
- Méthode alternative avec mise en œuvre de 200 mL et récupération de 100 mL de distillat.

3/ Laboratoires participants

19 laboratoires de différents pays ont participé :

Laboratório CVRVV	4050-501 Porto	Portugal
Laboratório de Análises da CVRA	7006-806 Évora	Portugal
Tocting Laboratory CAFIA		République
Testing Laboratory CAFIA	603 00 BRNO	tchèque
Laboratório ASAE - LBPV	1649-038 Lisboa	Portugal
Agroscope - Site de Changins	1260 Nyon 1	Suisse
Labo SCL de Bordeaux	33608 Pessac	France
Labo SCL de Montpellier	34196 Montpelllier	France
Laboratorio Arbitral Agroalimentario	28023 Madrid	Espagne
Estación Enológica de Haro	26200 Haro La Rioja	Espagne
Instituto dos Vinho do Douro do Porto	Porto 4050-253	Portugal
IVICAM	13700 Tomelloso, Ciudad Real	Espagne
INCAVI	08720 Vilafranca del Penedès	Espagne
ICQRF Laboratorio di		
Conegliano/Susegana	31058 SUSEGANA (TV)	Italie
ICQRF Laboratorio di Catania	95122 CATANIA	Italie
ICQRF Laboratorio di Modena	41100 Modena	Italie
ICQRF laboratorio di Perugia	06128 Perugia	Italie
ICQRF laboratorio di Salerno	84098 Salerno	Italie
ICQRF Laboratorio centrale di Roma	00149 Roma	Italie
Laboratoires DUBERNET	11100 Narbonne	France

4/ Résultats

	Echantillon N° 1		Echantillon N° 2 Echantillon N° 3		Echantillon N° 4		Echantillon N° 5		Echantillon N° 6			
Laboratoire	Position 2	Position 7	Position 4	Position 11	Position 6	Position 12	Position 5	Position 8	Position 9	Position 10	Position 1	Position 3
Α	0,21	0,21	0,55	0,55	1,34	1,34	2,58	2,58	4,59	4,60	6,54	6,50
В	0,11	0,14	0,49	0,50	1,32	1,38	2,60	2,57	4,68	4,72	6,52	6,55
С	0,33	0,28	0,68	0,61	1,43	1,35	2,63	2,60	4,63	4,66	6,58	6,51
D			0,62	0,62	1,38	1,36	2,68	2,67	4,69	4,73	6,62	6,64
E	0,20	0,21	0,55	0,56	1,36	1,40	2,61	2,62	4,67	4,68	6,56	6,55
F	0,18	0,12	0,52	0,51	1,31	1,30	2,56	2,56	4,70	4,66	6,51	6,54
G	0,22	0,22	0,55	0,56	1,37	1,37	2,62	2,62	4,68	4,68	6,58	6,57
Н			0,41	0,42	1,25	1,27	2,46	2,49	4,57	4,56	6,39	6,40
1	0,20	0,13	0,54	0,48	1,32	1,28	2,60	2,58	4,62	4,62	6,57	6,55
J	0,24	0,24	0,58	0,60	1,41	1,37	2,63	2,63	4,69	4,67	6,55	6,55
K	0,22	0,22	0,56	0,55	1,35	1,35	2,63	2,63	4,67	4,68	6,59	6,58
L	0,22	0,23	0,56	0,57	1,38	1,36	2,63	2,61	4,66	4,67	6,56	6,57
M	0,18	0,18	0,53	0,53	1,33	1,29			4,66	4,65	6,53	6,52
N	0,22	0,23	0,56	0,57	1,38	1,41	2,26	2,61	4,67	4,67	6,51	6,57
0	0,12	0,19	0,53	0,52	1,33	1,33	2,64	2,62	4,67	4,67	6,51	6,55
Р	0,25	0,25	0,57	0,58	1,39	1,41	2,66	2,65	4,70	4,68	6,62	6,62
Q	0,22	0,20	0,55	0,59	1,34	1,33	2,61	2,63	4,65	4,63	6,52	6,54
R	0,21	0,21	0,55	0,52	1,29	1,28	2,52	2,55	4,62	4,56	6,50	6,53
S	0,18	0,17	0,41	0,42	1,38	1,37	2,61	2,58	4,63	4,58	6,51	6,48

Tableau des résultats obtenus pour une distillation de 200 mL avec volume de récupération de 200 mL Les valeurs en gras correspondent aux valeurs rejetées conformément aux tests de Cochran (variance aberrante) au niveau de rejet de 2,5% (test unilatéral) et de Grubbs (moyennes aberrantes) au niveau de rejet de 2,5% (test bilatéral).

Note : Les valeurs absentes n'ont pas été renseignées par le laboratoire concerné

	Echantillon N° 1		Echant	illon N° 2	Echantillon N° 3		Echantillon N° 4		Echantillon N° 5		Echantillon N° 6	
Laboratoire	Position 2	Position 7	Position 4	Position 11	Position 6	Position 12	Position 5	Position 8	Position 9	Position 10	Position 1	Position 3
Α												
В	0,17	0,18	0,52	0,53	1,34	1,36	2,62	2,62	4,62	4,60	6,48	6,52
С	0,25	0,25	0,56	0,62	1,35	1,36	2,50	2,46	4,48	4,44	6,12	6,19
D	0,29	0,29	0,63	0,63	1,43	1,42	2,66	2,65	4,68	4,69	6,58	6,59
E	0,24	0,24	0,58	0,58	1,39	1,39	2,64	2,64	4,66	4,67	6,55	6,57
F	0,21	0,18	0,53	0,53	1,31	1,27	2,41	2,48	4,30	4,31	6,22	5,89
G	0,24	0,24	0,56	0,57	1,35	1,36	2,58	2,57	4,57	4,56	6,46	6,43
Н	0,19	0,18	0,48	0,55	1,33	1,32	2,51	2,55	4,59	4,54	6,38	6,42
I	0,25	0,18	0,56	0,53	1,34	1,33	2,62	2,61	4,64	4,64	6,25	6,28
J	0,24	0,24	0,55	0,56	1,31	1,32	2,49	2,53	4,37	4,34	6,14	6,12
K	0,25	0,25	0,57	0,57	1,37	1,38	2,60	2,61	4,60	4,61	6,48	6,38
L	0,24	0,24	0,55	0,55	1,35	1,31	2,52	2,47	4,38	4,31	6,09	6,06
M	0,19	0,20	0,55	0,55	1,34	1,31			4,68	4,67	6,52	6,54
N	0,28	0,26	0,58	0,59	1,28	1,28	2,52	2,47	4,44	4,32	6,01	6,15
0	0,19	0,25	0,57	0,57	1,39	1,39	2,63	2,64	4,66	4,66	6,57	6,57
Р	0,25	0,26	0,57	0,57	1,36	1,36	2,58	2,56	4,54	4,53	6,34	6,38
Q	0,24	0,24	0,57	0,57	1,38	1,38	2,63	2,62	4,66	4,67	6,56	6,56
R	0,23	0,23	0,54	0,55	1,32	1,30	2,54	2,56	4,56	4,52	6,40	6,35
S	0,27	0,26	0,55	0,57	1,34	1,34	2,46	2,43	4,53	4,51	6,36	6,36

Tableau des résultats obtenus pour une distillation de 200 mL avec volume de récupération de 100 mL. Les valeurs en gras correspondent aux valeurs rejetées conformément aux tests de Cochran (variance aberrante) au niveau de rejet de 2,5% (test unilatéral) et de Grubbs (moyennes aberrantes) au niveau de rejet de 2,5% (test bilatéral).

Note: Les valeurs absentes n'ont pas été renseignées par le laboratoire concerné.

	Echantillon 1	Echantillon 2	Echantillon 3	Echantillon 4	Echantillon 5	Echantillon 6
Nb de laboratoires retenus	17	19	19	17	19	18
Nb de répétitions	2	2	2	2	2	2
Minimum	0,11	0,41	1,25	2,46	4,56	6,48
Maximum	0,33	0,68	1,43	2,68	4,73	6,64
Moyenne globale	0,20	0,54	1,35	2,60	4,65	6,55
Variance de répétabilité	0,00052	0,00033	0,00050	0,00019	0,00036	0,00047
Variance de reproductibilité	0,00211	0,00345	0,00190	0,00229	0,00181	0,00147
Ecartype interlaboratoire	0,043	0,057	0,041	0,047	0,040	0,035
Ecartype de répétabilité	0,02	0,02	0,02	0,01	0,02	0,02
Limite r	0,06	0,05	0,06	0,04	0,05	0,061
CV répétabilité	11,1	3,3	1,7	0,5	0,4	0,3
Ecartype de reproductibilité	0,046	0,059	0,044	0,048	0,043	0,038
Limite R	0,130	0,166	0,123	0,135	0,120	0,109
CV reproductibilité	22,5	10,9	3,2	1,8	0,9	0,6
Horwitz RSDr	3,36	2,90	2,52	2,29	2,09	1,99
Horrat r	3,3	1,1	0,7	0,2	0,2	0,2
Horwitz RSDR	5,10	4,39	3,82	3,46	3,17	3,01
Horrat R	4,4	2,5	0,8	0,5	0,3	0,2

Tableau : Données obtenues pour un distillat de 200 mL à partir de 200 mL d'échantillon.

	Echantillon 1	Echantillon 2	Echantillon 3	Echantillon 4	Echantillon 5	Echantillon 6
Nb de laboratoires retenus	16	15	18	17	17	17
Nb de répétitions	2	2	2	2	2	2
Minimum	0,17	0,52	1,27	2,41	4,30	6,01
Maximum	0,29	0,63	1,43	2,66	4,69	6,59
Moyenne globale	0,24	0,56	1,35	2,56	4,55	6,38
Variance de répétabilité	0,00006	0,00003	0,00016	0,00050	0,00039	0,00135
Ecartype interlaboratoire	0,03209	0,02496	0,03752	0,07013	0,12167	0,17621
Variance de reproductibilité	0,001	0,001	0,001	0,005	0,015	0,031
Ecartype de répétabilité	0,01	0,01	0,01	0,02	0,02	0,04
Limite r	0,02	0,02	0,04	0,06	0,06	0,104
CV répétabilité	3,2	1,0	0,9	0,9	0,4	0,6
Ecartype de reproductibilité	0,033	0,025	0,039	0,072	0,122	0,178
Limite R	0,092	0,071	0,109	0,203	0,347	0,504
CV reproductibilité	13,8	4,5	2,9	2,8	2,7	2,8
Horwitz RSDr	3,27	2,88	2,52	2,29	2,10	2,00
Horrat r	1,0	0,4	0,4	0,4	0,2	0,3
Horwitz RSDR	4,96	4,36	3,82	3,47	3,18	3,03
Horrat R	2,8	1,0	0,8	0,8	0,9	0,9

Données obtenues pour un distillat de 100 mL à partir de 200 mL d'échantillon